<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于函數型數字孿生模型的轉爐煉鋼終點碳控制技術

徐鋼 黎敏 徐金梧 賈春輝 陳兆富

徐鋼, 黎敏, 徐金梧, 賈春輝, 陳兆富. 基于函數型數字孿生模型的轉爐煉鋼終點碳控制技術[J]. 工程科學學報, 2019, 41(4): 521-527. doi: 10.13374/j.issn2095-9389.2019.04.013
引用本文: 徐鋼, 黎敏, 徐金梧, 賈春輝, 陳兆富. 基于函數型數字孿生模型的轉爐煉鋼終點碳控制技術[J]. 工程科學學報, 2019, 41(4): 521-527. doi: 10.13374/j.issn2095-9389.2019.04.013
XU Gang, LI Min, XU Jin-wu, JIA Chun-hu, CHEN Zhao-fu. Control technology of end-point carbon in converter steelmaking based on functional digital twin model[J]. Chinese Journal of Engineering, 2019, 41(4): 521-527. doi: 10.13374/j.issn2095-9389.2019.04.013
Citation: XU Gang, LI Min, XU Jin-wu, JIA Chun-hu, CHEN Zhao-fu. Control technology of end-point carbon in converter steelmaking based on functional digital twin model[J]. Chinese Journal of Engineering, 2019, 41(4): 521-527. doi: 10.13374/j.issn2095-9389.2019.04.013

基于函數型數字孿生模型的轉爐煉鋼終點碳控制技術

doi: 10.13374/j.issn2095-9389.2019.04.013
基金項目: 

國家高技術研究發展計劃(863計劃) 2014AA041801-2

詳細信息
    通訊作者:

    黎敏, E-mail: limin@ustb.edu.cn

  • 中圖分類號: TP277

Control technology of end-point carbon in converter steelmaking based on functional digital twin model

More Information
  • 摘要: 由于轉爐冶煉過程中的熱力學和動力學反應復雜,副槍控制模型和傳統的煙氣分析模型存在很大的局限性,導致了轉爐冶煉終點碳含量的預測精度偏低,是實現智能煉鋼的主要技術瓶頸. 針對上述問題,提出了基于煙氣分析的煉鋼過程函數型數字孿生模型. 首先,利用煙氣分析得到連續監測的實時數據,以此來實時監控轉爐熔池內鋼水的碳氧反應狀態; 然后,根據熔池反應所處的不同階段,利用函數型數據分析方法建立吹煉前期和吹煉后期的函數型預測模型; 在此基礎上,按照吹煉前期和吹煉后期這兩個階段來分別自動修正模型中的系數函數,從而能在復雜的實際工況條件下完成對熔池碳含量的準確預測. 通過260 t氧氣轉爐的工業應用實例,證實函數型數字孿生模型具有良好的自學習和自適應能力,對異常冶煉狀態具有良好的魯棒性,可以實現全過程的熔池碳含量動態預測,終點碳質量分數在± 0. 02% 范圍內的命中率為95%. 利用函數型數字孿生模型在拉碳階段對鋼水中碳含量的預測值來控制終吹點. 更為重要的是,在保證入爐原料成分、溫度、質量等參數穩定的前提下,采用該模型可以有望取消基于副槍的停吹取樣步驟,從而降低生產成本,提高產品質量和生產效率,具有廣泛的工業應用前景.

     

  • 圖  1  冶煉過程中,CO和CO2含量的變化曲線

    Figure  1.  Profile of COand CO2 during the steelmaking process

    圖  2  正常情況下煙氣數據實測與擬合曲線

    Figure  2.  Measured and fitted off-gas profile under normal conditions

    圖  3  出現噴濺時煙氣數據實測與擬合曲線

    Figure  3.  Measured and fitted off-gas profile when slopping occurs

    圖  4  二次扒渣過程中煙氣數據曲線

    Figure  4.  Off-gas profile in two-stage slagging

    圖  5  二次扒渣后正常情況下煙氣曲線

    Figure  5.  Off-gas profile under normal conditions after two-stage slagging

    圖  6  二次扒渣后出現噴濺時煙氣曲線

    Figure  6.  Off-gas profile when slopping occurs after two-stage slagging

    圖  7  常規冶煉情況下拉碳階段碳含量對比圖

    Figure  7.  Carbon comparison in decarburization stage in normal steelmaking

    圖  8  二次扒渣情況下拉碳階段碳含量對比圖

    Figure  8.  Carbon comparison in decarburization stage in two-stage slagging

    圖  9  終點碳實測值(TSO) 和模型預測值對比圖

    Figure  9.  End-point carbon comparison between measured and predicted data

    表  1  副槍檢測時(TSC) CO和C質量分數對比表

    Table  1.   Comparison of COand C content at time of sublance (TSC) testing?%

    鋼種 實測CO 預測CO 實測C 預測C
    AH32 32. 091 30. 810 0. 223 0. 199
    AH32 24. 222 21. 285 0. 425 0. 446
    SPHC 22. 578 21. 521 0. 448 0. 463
    SPA-H 32. 637 32. 631 0. 269 0. 250
    SPHC 22. 571 21. 098 0. 367 0. 394
    B 27. 867 25. 655 0. 355 0. 340
    SPHC 20. 924 20. 009 0. 406 0. 403
    IF 34. 245 33. 411 0. 246 0. 229
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Aacatech-National Academy of Science and Engineering. CyberPhysical Systems: Driving Force for Innovations in Mobility, Health, Energy and Production. Berlin: Springer Publishing Company, 2012
    [2] Lee E A.CPS foundations//Design Automation Conference.Anaheim, 2010: 737
    [3] Yin R Y. A discussion on"smart"steel plant-view from physical system side. Iron Steel, 2017, 52(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201706001.htm

    殷瑞鈺. 關于智能化鋼廠的討論—從物理系統一側出發討論鋼廠智能化. 鋼鐵, 2017, 52(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201706001.htm
    [4] China Information Physics System Development Forum.White Paper on Information Physics Systems [J/OL].Cyber Physical Systems (2017-03-02) [2018-07-20].http://www.cesi.cn/201703/2251.html 中國信息物理系統發展論壇. 信息物理系統白皮書[J/OL]. 信息物理系統(2017-03-02) [2018-07-20]. http://www.cesi.cn/201703/2251.html
    [5] Zhang C X, Cheng L L, Wang X D. Research on architecture of intelligent manufacturing based on cyber-physical system. Comput Sci, 2013, 40(6A): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2013S1007.htm

    張彩霞, 程良倫, 王向東. 基于信息物理融合系統的智能制造架構研究. 計算機科學, 2013, 40(6A): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2013S1007.htm
    [6] Sun X Y, Wang X, Wu J W, et al. Prediction-based manufacturing center self-adaptive demand side energy optimization in cyber physical systems. Chin J Mech Eng, 2014, 27(3): 488 doi: 10.3901/CJME.2014.03.488
    [7] Wang L H, T?rngren M, Onori M. Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst, 2015, 37: 517 doi: 10.1016/j.jmsy.2015.04.008
    [8] Pirvu B C, Zamfirescu C B, Gorecky D. Engineering insights from an anthropocentric cyber-physical system: a case study for an assembly station. Mechatronics, 2016, 34: 147 doi: 10.1016/j.mechatronics.2015.08.010
    [9] Xu G, Zhang X T, Li M, et al. Online monitoring and control method of product quality based on embedded cyber-physical system models. J Mech Eng, 2017, 53(12): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712012.htm

    徐鋼, 張曉彤, 黎敏, 等. 基于嵌入式CPS模型的產品質量在線管控方法. 機械工程學報, 2017, 53(12): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712012.htm
    [10] Wang X H, Li J Z, Liu F G. Technological progress of BOF steelmaking in period of development mode transition. Steelmaking, 2017, 33(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201701002.htm

    王新華, 李金柱, 劉鳳剛. 轉型發展形勢下的轉爐煉鋼科技進步. 煉鋼, 2017, 33(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201701002.htm
    [11] Liao D S, Sun S, Waterfall S, et al.Integrated KOBM steelmaking process control//Oxygen Steelmaking.Beijing, 2015: 107
    [12] Wu L, Jiang Z H, Gong W, et al. Continuous control of BOF by gas analysis. Steelmaking, 2008, 24(1): 12

    吳令, 姜周華, 龔偉, 等. 通過煙氣分析實現轉爐連續控制. 煉鋼, 2008, 24(1): 12
    [13] Xie S M, Tao J, Chai T Y. BOF steelmaking endpoint control based on neural network. Control Theory Appl, 2003, 20(6): 903 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200306018.htm

    謝書明, 陶鈞, 柴天佑. 基于神經網絡的轉爐煉鋼終點控制. 控制理論與應用, 2003, 20(6): 903 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200306018.htm
    [14] Yuan P, Mao Z Z, Wang F L. Endpoint prediction of EAF based on multiple support vector machines. J Iron Steel Res Int, 2007, 14(2): 20 doi: 10.1016/S1006-706X(07)60021-1
    [15] Han M, Zhao Y, Yang X L, et al. Endpoint prediction model of basic oxygen furnace steelmaking based on robust relevance vector machines. Control Theory Appl, 2011, 28(3): 343 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201103009.htm

    韓敏, 趙耀, 楊溪林, 等. 基于魯棒相關向量機的轉爐煉鋼終點預報模型. 控制理論與應用, 2011, 28(3): 343 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201103009.htm
    [16] Ramsay J O, Silverman B W. Functional Data Analysis. 2nd Ed. New York: Springer, 2005
    [17] Morris J S. Functional regression. Ann Rev Stat Appl, 2015, 2: 321 doi: 10.1146/annurev-statistics-010814-020413
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  1106
  • HTML全文瀏覽量:  459
  • PDF下載量:  94
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-23
  • 刊出日期:  2019-04-15

目錄

    /

    返回文章
    返回