Control technology of end-point carbon in converter steelmaking based on functional digital twin model
-
摘要: 由于轉爐冶煉過程中的熱力學和動力學反應復雜,副槍控制模型和傳統的煙氣分析模型存在很大的局限性,導致了轉爐冶煉終點碳含量的預測精度偏低,是實現智能煉鋼的主要技術瓶頸. 針對上述問題,提出了基于煙氣分析的煉鋼過程函數型數字孿生模型. 首先,利用煙氣分析得到連續監測的實時數據,以此來實時監控轉爐熔池內鋼水的碳氧反應狀態; 然后,根據熔池反應所處的不同階段,利用函數型數據分析方法建立吹煉前期和吹煉后期的函數型預測模型; 在此基礎上,按照吹煉前期和吹煉后期這兩個階段來分別自動修正模型中的系數函數,從而能在復雜的實際工況條件下完成對熔池碳含量的準確預測. 通過260 t氧氣轉爐的工業應用實例,證實函數型數字孿生模型具有良好的自學習和自適應能力,對異常冶煉狀態具有良好的魯棒性,可以實現全過程的熔池碳含量動態預測,終點碳質量分數在± 0. 02% 范圍內的命中率為95%. 利用函數型數字孿生模型在拉碳階段對鋼水中碳含量的預測值來控制終吹點. 更為重要的是,在保證入爐原料成分、溫度、質量等參數穩定的前提下,采用該模型可以有望取消基于副槍的停吹取樣步驟,從而降低生產成本,提高產品質量和生產效率,具有廣泛的工業應用前景.Abstract: An important part of the iron-and-steel production process, converter steelmaking is the most widely used and efficient method of steelmaking in the world. Under the requirements of"China Manufacturing 2025, "ensuring intelligent steelmaking, improving smelting production efficiency, and reducing production cost are major concerns that should be addressed urgently in converter steelmaking. Owing to the complex thermodynamic and dynamic reactions in the converter smelting process, sublance control and traditional flue-gas analysis models have limitations that result in low prediction accuracy of the end-point carbon in converter smelting, thereby causing the main technical bottleneck in intelligent steelmaking. Therefore, a functional digital twin model of the steelmaking process based on flue-gas analysis was proposed. First, continuously monitored real-time data were obtained by flue gas analysis to observe the carbon and oxygen reaction state of molten steel in the converter. Then, according to various stages of the converter reaction, the functional data analysis method was used to establish the functional prediction models for the early and late stages of blowing. The greatest advantage of the method is that the model can automatically adjust the coefficient function according to the measured off-gas data by using a continuous functional curve to fit the complex dynamic reaction process. Therefore, the proposed model can accurately predict not only the normal smelting process but also the decarburization and carbon drawing process for the secondary scraping slag. An industrial experiment on a 260 t converter was conducted to prove that the functional digital twin model of the converter smelting process has good self-learning and self-adaptive ability and is robust to the abnormal smelting state. Furthermore, the model can predict the carbon content of the converter dynamically in the entire process and the end-point carbon content can reach 95% at ± 0. 02%. Using the predicted value of the carbon content to control the final blowing point through the functional digital twin model can effectively prevent overblowing or underblowing. More importantly, on the premise of guaranteeing the stability of raw material composition, temperature, weight, and other parameters, the model is expected to cancel the blown-off sampling step based on sublance. This feature can reduce the production cost while improving the product quality and production efficiency for a wide range of industrial applications.
-
表 1 副槍檢測時(TSC) CO和C質量分數對比表
Table 1. Comparison of COand C content at time of sublance (TSC) testing?
% 鋼種 實測CO 預測CO 實測C 預測C AH32 32. 091 30. 810 0. 223 0. 199 AH32 24. 222 21. 285 0. 425 0. 446 SPHC 22. 578 21. 521 0. 448 0. 463 SPA-H 32. 637 32. 631 0. 269 0. 250 SPHC 22. 571 21. 098 0. 367 0. 394 B 27. 867 25. 655 0. 355 0. 340 SPHC 20. 924 20. 009 0. 406 0. 403 IF 34. 245 33. 411 0. 246 0. 229 259luxu-164 -
參考文獻
[1] Aacatech-National Academy of Science and Engineering. CyberPhysical Systems: Driving Force for Innovations in Mobility, Health, Energy and Production. Berlin: Springer Publishing Company, 2012 [2] Lee E A.CPS foundations//Design Automation Conference.Anaheim, 2010: 737 [3] Yin R Y. A discussion on"smart"steel plant-view from physical system side. Iron Steel, 2017, 52(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201706001.htm殷瑞鈺. 關于智能化鋼廠的討論—從物理系統一側出發討論鋼廠智能化. 鋼鐵, 2017, 52(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201706001.htm [4] China Information Physics System Development Forum.White Paper on Information Physics Systems [J/OL].Cyber Physical Systems (2017-03-02) [2018-07-20].http://www.cesi.cn/201703/2251.html 中國信息物理系統發展論壇. 信息物理系統白皮書[J/OL]. 信息物理系統(2017-03-02) [2018-07-20]. http://www.cesi.cn/201703/2251.html [5] Zhang C X, Cheng L L, Wang X D. Research on architecture of intelligent manufacturing based on cyber-physical system. Comput Sci, 2013, 40(6A): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2013S1007.htm張彩霞, 程良倫, 王向東. 基于信息物理融合系統的智能制造架構研究. 計算機科學, 2013, 40(6A): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2013S1007.htm [6] Sun X Y, Wang X, Wu J W, et al. Prediction-based manufacturing center self-adaptive demand side energy optimization in cyber physical systems. Chin J Mech Eng, 2014, 27(3): 488 doi: 10.3901/CJME.2014.03.488 [7] Wang L H, T?rngren M, Onori M. Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst, 2015, 37: 517 doi: 10.1016/j.jmsy.2015.04.008 [8] Pirvu B C, Zamfirescu C B, Gorecky D. Engineering insights from an anthropocentric cyber-physical system: a case study for an assembly station. Mechatronics, 2016, 34: 147 doi: 10.1016/j.mechatronics.2015.08.010 [9] Xu G, Zhang X T, Li M, et al. Online monitoring and control method of product quality based on embedded cyber-physical system models. J Mech Eng, 2017, 53(12): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712012.htm徐鋼, 張曉彤, 黎敏, 等. 基于嵌入式CPS模型的產品質量在線管控方法. 機械工程學報, 2017, 53(12): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712012.htm [10] Wang X H, Li J Z, Liu F G. Technological progress of BOF steelmaking in period of development mode transition. Steelmaking, 2017, 33(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201701002.htm王新華, 李金柱, 劉鳳剛. 轉型發展形勢下的轉爐煉鋼科技進步. 煉鋼, 2017, 33(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201701002.htm [11] Liao D S, Sun S, Waterfall S, et al.Integrated KOBM steelmaking process control//Oxygen Steelmaking.Beijing, 2015: 107 [12] Wu L, Jiang Z H, Gong W, et al. Continuous control of BOF by gas analysis. Steelmaking, 2008, 24(1): 12吳令, 姜周華, 龔偉, 等. 通過煙氣分析實現轉爐連續控制. 煉鋼, 2008, 24(1): 12 [13] Xie S M, Tao J, Chai T Y. BOF steelmaking endpoint control based on neural network. Control Theory Appl, 2003, 20(6): 903 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200306018.htm謝書明, 陶鈞, 柴天佑. 基于神經網絡的轉爐煉鋼終點控制. 控制理論與應用, 2003, 20(6): 903 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200306018.htm [14] Yuan P, Mao Z Z, Wang F L. Endpoint prediction of EAF based on multiple support vector machines. J Iron Steel Res Int, 2007, 14(2): 20 doi: 10.1016/S1006-706X(07)60021-1 [15] Han M, Zhao Y, Yang X L, et al. Endpoint prediction model of basic oxygen furnace steelmaking based on robust relevance vector machines. Control Theory Appl, 2011, 28(3): 343 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201103009.htm韓敏, 趙耀, 楊溪林, 等. 基于魯棒相關向量機的轉爐煉鋼終點預報模型. 控制理論與應用, 2011, 28(3): 343 https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201103009.htm [16] Ramsay J O, Silverman B W. Functional Data Analysis. 2nd Ed. New York: Springer, 2005 [17] Morris J S. Functional regression. Ann Rev Stat Appl, 2015, 2: 321 doi: 10.1146/annurev-statistics-010814-020413 -