<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Zr-Cu薄膜生長及力學性能的分子動力學模擬

謝璐 安豪杰 秦勤 臧勇

謝璐, 安豪杰, 秦勤, 臧勇. Zr-Cu薄膜生長及力學性能的分子動力學模擬[J]. 工程科學學報, 2019, 41(4): 497-504. doi: 10.13374/j.issn2095-9389.2019.04.010
引用本文: 謝璐, 安豪杰, 秦勤, 臧勇. Zr-Cu薄膜生長及力學性能的分子動力學模擬[J]. 工程科學學報, 2019, 41(4): 497-504. doi: 10.13374/j.issn2095-9389.2019.04.010
XIE Lu, AN Hao-jie, QIN Qin, ZANG Yong. Molecular dynamic simulations of the growth and mechanical properties of Zr—Cu films[J]. Chinese Journal of Engineering, 2019, 41(4): 497-504. doi: 10.13374/j.issn2095-9389.2019.04.010
Citation: XIE Lu, AN Hao-jie, QIN Qin, ZANG Yong. Molecular dynamic simulations of the growth and mechanical properties of Zr—Cu films[J]. Chinese Journal of Engineering, 2019, 41(4): 497-504. doi: 10.13374/j.issn2095-9389.2019.04.010

Zr-Cu薄膜生長及力學性能的分子動力學模擬

doi: 10.13374/j.issn2095-9389.2019.04.010
基金項目: 

國家自然科學基金資助項目 51375041

國家自然科學基金資助項目 21703007

中央高校基本科研業務資助項目 FRF-TP-16-044A1

詳細信息
    通訊作者:

    秦勤, E-mail: qinqin@me.ustb.edu.cn

  • 中圖分類號: TG139+.8

Molecular dynamic simulations of the growth and mechanical properties of Zr—Cu films

More Information
  • 摘要: 根據磁控濺射實驗條件, 采用分子動力學方法, 在Si(100)面上模擬沉積了三種ZrxCu100-x(x=50, 70和90)合金薄膜.通過計算徑向分布函數(RDF)及X射線衍射(XRD)分析了沉積薄膜的形貌結構, 并探討了玻璃形成能力和五重局部對稱性之間的關系.最后研究了沉積薄膜的力學性能, 及薄膜厚度對拉伸過程的影響.研究結果表明: Zr-Cu合金玻璃形成能力與五重局部對稱性之間存在一定的相關性, 沉積玻璃薄膜比晶體薄膜表現出更好的延展性, 其中Zr50Cu50沉積玻璃薄膜比近共晶成分玻璃薄膜(Zr70Cu30)具有更大的拉伸強度; 沉積薄膜存在一定的尺寸效應, 薄膜相對厚度越小, 其拉伸強度越大.

     

  • 圖  1  沉積模型示意圖(—Zr; —Cu; —Si; —固定的Si原子)

    Figure  1.  Schematic of the deposition model (—Zr; —Cu; —moving Si atoms; —Si fixed atoms)

    圖  2  不同比例Zr、Cu原子在Si(100) 基底的沉積演化過程. (a) Zr50Cu50; (b) Zr70Cu30; (c) Zr90Cu10(—Zr; —Cu; —Si

    Figure  2.  Snapshots of Zr-Cu coatings deposited on Si (100) substrate at different ratios of Zr and Cu atoms: (a) Zr50Cu50; (b) Zr70Cu30; (c) Zr90Cu10 (—Zr; —Cu; —Si)

    圖  3  三種沉積薄膜的徑向分布函數(a) 和X射線衍射圖譜(b)

    Figure  3.  RDF (a) and XRD (b) graphs of three deposited films

    圖  4  非晶沉積薄膜的力學性能. (a) 三種厚度Zr50Cu50沉積薄膜的應力應變曲線; (b) Zr50Cu50拉伸變形圖; (c) 三種厚度Zr70Cu30沉積薄膜的應力應變曲線; (d) Zr70Cu30拉伸變形圖

    Figure  4.  Mechanical properties of amorphous deposited films: (a) stress-strain curves of Zr50Cu50deposited MG films with three thicknesses; (b) deformation maps of Zr50Cu50; (c) stress-strain curves of Zr70Cu30deposited MG films with three thicknesses; (d) deformation maps of Zr70Cu30

    圖  5  三種厚度Zr90Cu10沉積晶體薄膜的應力性能. (a) 應力應變曲線; (b) 拉伸變形圖

    Figure  5.  Mechanical properties of Zr90Cu10deposited crystal films with three thicknesses: (a) stress-strain curves; (b) deformation maps

    圖  6  不同組分ZrxCu100-x的五重局部對稱性與非晶生成焓

    Figure  6.  Evolution of five-fold local symmetry and enthalpy of formation of amorphous alloys in ZrxCu100-x

    表  1  沉積薄膜的元素組成和厚度

    Table  1.   Elemental compositions and thicknesses of deposited thin films

    薄膜 Zr Cu 總原子數 薄膜厚度/nm
    Zr50Cu50 4675 4460 9135 5.5
    Zr70Cu30 6496 2700 9196 6.4
    Zr90Cu10 8229 900 9129 7.0
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xie L, Brault P, Thomann A L, et al. Molecular dynamic simulation of binary ZrxCu100-x metallic glass thin film growth. Appl Surf Sci, 2013, 274: 164 doi: 10.1016/j.apsusc.2013.03.004
    [2] Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci, 2011, 56(4): 379 doi: 10.1016/j.pmatsci.2010.12.002
    [3] Zeman P, Zítek M, Zuzjaková ?, et al. Amorphous Zr-Cu thinfilm alloys with metallic glass behavior. J Alloys Compd, 2017, 696: 1298 doi: 10.1016/j.jallcom.2016.12.098
    [4] Xu D H, Lohwongwatana B, Duan G, et al. Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x=34, 36, 38. 2, 40 at. %) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater, 2004, 52(9): 2621 doi: 10.1016/j.actamat.2004.02.009
    [5] Musil J, Daniel R. Structure and mechanical properties of magnetron sputtered Zr-Ti-Cu-N films. Surf Coat Technol, 2003, 166(2-3): 243 doi: 10.1016/S0257-8972(02)00819-8
    [6] Eckert J, Das J, Kim K B, et al. High strength ductile Cu-base metallic glass. Intermetallics, 2006, 14(8-9): 876 doi: 10.1016/j.intermet.2006.01.003
    [7] Karpe N, B?ttiger J, Krog J P, et al. Influence of deposition conditions and ion irradiation on thin films of amorphous Cu-Zr superconductors. Thin Solid Films, 1996, 275(1-2): 82 doi: 10.1016/0040-6090(95)07025-7
    [8] Dudonis J, Bru?as R, Miniotas A. Synthesis of amorphous Zr-Cu alloys by magnetron co-sputtering. Thin Solid Films, 1996, 275(1-2): 164 doi: 10.1016/0040-6090(95)07033-8
    [9] Apreutesei M, Djemia P, Belliard L, et al. Structural-elastic relationships of Zr-TL (TL=Cu, Co, Ni) thin films metallic glasses. J Alloys Compd, 2017, 707: 126 doi: 10.1016/j.jallcom.2016.12.208
    [10] Aji D P B, Hirata A, Zhu F, et al. Ultrastrong and ultrastable metallic glass[J/OL]. Physics (2013-06)[2018-07-28]. https://arxiv.org/pdf/1306.1575
    [11] Xie L, Brault P, Bauchire J M, et al. Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition. J Phys D Appl Phys, 2014, 47(22): 224004 doi: 10.1088/0022-3727/47/22/224004
    [12] Hajlaoui K, Alsaleh N, Alrasheedi N H, et al. Coalescence and subsequent twinning of nanocrystals during deformation of CuZrbased metallic glasses: the grain size effect. J Non-Cryst Solids, 2017, 464: 39 doi: 10.1016/j.jnoncrysol.2017.03.019
    [13] Sha Z D, Zhang Y W, Feng Y P, et al. Molecular dynamics studies of short to medium range order in Cu64Zr36 metallic glass. J Alloys Compd, 2011, 509(33): 8319 doi: 10.1016/j.jallcom.2011.05.071
    [14] Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132(2-3): 233 doi: 10.1016/j.matchemphys.2011.11.021
    [15] Tripathi M K, Chattopadhyay P P, Ganguly S. A predictable glass forming ability expression by statistical learning and evolutionary intelligence. Intermetallics, 2017, 90: 9 doi: 10.1016/j.intermet.2017.06.008
    [16] Sha Z D, Feng Y P, Li Y. Statistical composition-structure-property correlation and glass-forming ability based on the full icosahedra in Cu-Zr metallic glasses. Appl Phys Lett, 2010, 96(6): 061903 doi: 10.1063/1.3310278
    [17] Almyras G A, Lekka C E, Mattern N, et al. On the microstructure of the Cu65Zr35 and Cu35Zr65 metallic glasses. Scripta Mater, 2010, 62(1): 33 doi: 10.1016/j.scriptamat.2009.09.019
    [18] Pan J, Wang Y X, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass. Nature Commun, 2018, 9(1): 560 doi: 10.1038/s41467-018-02943-4
    [19] Wu T W, Feng S D, Qi L, et al. The compressive behaviour after crystallisation in Zr85Cu15 metallic glasses studied by molecular dynamics simulations. J Non-Cryst Solids, 2017, 468: 41 doi: 10.1016/j.jnoncrysol.2017.04.024
    [20] Zhong C, Zhang H, Cao Q P, et al. The size-dependent non-localized deformation in a metallic alloy. Scripta Mater, 2015, 101: 48 doi: 10.1016/j.scriptamat.2015.01.015
    [21] Yang G J, Xu B, Kong L T, et al. Size effects in Cu50Zr50 metallic glass films revealed by molecular dynamics simulations. J Alloys Compd, 2016, 688: 88 http://www.sciencedirect.com/science/article/pii/S0925838816322149
    [22] Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass. Nature Mater, 2007, 6: 735 doi: 10.1038/nmat1984
    [23] Liu M. ZrCu Block Amorphous Alloy Structure and Mechanical Properties of Molecular Dynamics Simulation[Dissertation]. Qinhuangdao: Yanshan University, 2012

    劉美. ZrCu塊體非晶合金結構及力學性能的分子動力學模擬[學位論文]. 秦皇島: 燕山大學, 2012
    [24] Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses. Acta Metall Sin, 2016, 52(10): 1171 doi: 10.11900/0412.1961.2016.00348

    張哲峰, 屈瑞濤, 劉增乾. 金屬玻璃的斷裂行為與強度理論研究進展. 金屬學報, 2016, 52(10): 1171 doi: 10.11900/0412.1961.2016.00348
    [25] Zhang Z F, Wu F F, Fan J T, et al. Deformation and fracture of amorphous alloy materials. Sci China (Series G Phys Mech Astron), 2008, 38(4): 349 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804002.htm

    張哲峰, 伍復發, 范吉堂, 等. 非晶合金材料的變形與斷裂. 中國科學(G輯: 物理學力學天文學), 2008, 38(4): 349 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804002.htm
    [26] Utz M, Peng Q, Nandagopal M. Athermal simulation of plastic deformation in amorphous solids at constant pressure. J Polym Sci Part B Polym Phys, 2004, 42(11): 2057 doi: 10.1002/polb.20092
    [27] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1): 1 doi: 10.1006/jcph.1995.1039
    [28] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modell Simul Mater Sci Eng, 2010, 18(1): 015012 doi: 10.1088/0965-0393/18/1/015012
    [29] Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81(8): 3684 doi: 10.1063/1.448118
    [30] Finney J L. Modelling the structures of amorphous metals and alloys. Nature, 1977, 266(5600): 309 doi: 10.1038/266309a0
    [31] Daw M S, Baskes M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B, 1984, 29(12): 6443 doi: 10.1103/PhysRevB.29.6443
    [32] Graves D B, Brault P. Molecular dynamics for low temperature plasma-surface interaction studies. J Phys D Appl Phys, 2009, 42(19): 194011 doi: 10.1088/0022-3727/42/19/194011
    [33] Zhen S, Davies G J. Calculation of the Lennard-Jones n-m potential energy parameters for metals. Phys Status Solidi A, 1983, 78(2): 595 doi: 10.1002/pssa.2210780226
    [34] Zhou H F, Zhong C, Cao Q P, et al. Non-localized deformation in metallic alloys with amorphous structure. Acta Mater, 2014, 68: 32 doi: 10.1016/j.actamat.2014.01.003
    [35] Turchanin A A, Tomilin I A, Turchanin M A, et al. Enthalpies of formation of liquid and amorphous Cu-Zr alloys. J Non-Cryst Solids, 1999, 250-252: 582 doi: 10.1016/S0022-3093(99)00136-2
    [36] Ge L, Hui X D, Chen G L, et al. Prediction of the glass forming ability of Cu-Zr binary alloys. Acta Phys-Chim Sin, 2007, 23(6): 895 https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200706018.htm

    葛麗, 惠希東, 陳國良, 等. Cu-Zr二元系非晶合金的玻璃形成能力預測. 物理化學學報, 2007, 23(6): 895 https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200706018.htm
    [37] Spaepen F. Five-fold symmetry in liquids. Nature, 2000, 408(6814): 781 doi: 10.1038/35048652
  • 加載中
圖(6) / 表(1)
計量
  • 文章訪問數:  1347
  • HTML全文瀏覽量:  567
  • PDF下載量:  42
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-28
  • 刊出日期:  2019-04-15

目錄

    /

    返回文章
    返回