Molecular dynamic simulations of the growth and mechanical properties of Zr—Cu films
-
摘要: 根據磁控濺射實驗條件, 采用分子動力學方法, 在Si(100)面上模擬沉積了三種ZrxCu100-x(x=50, 70和90)合金薄膜.通過計算徑向分布函數(RDF)及X射線衍射(XRD)分析了沉積薄膜的形貌結構, 并探討了玻璃形成能力和五重局部對稱性之間的關系.最后研究了沉積薄膜的力學性能, 及薄膜厚度對拉伸過程的影響.研究結果表明: Zr-Cu合金玻璃形成能力與五重局部對稱性之間存在一定的相關性, 沉積玻璃薄膜比晶體薄膜表現出更好的延展性, 其中Zr50Cu50沉積玻璃薄膜比近共晶成分玻璃薄膜(Zr70Cu30)具有更大的拉伸強度; 沉積薄膜存在一定的尺寸效應, 薄膜相對厚度越小, 其拉伸強度越大.Abstract: The binary Zr-Cu system is a paradigm for studying the atomistic structure-property relationships and glass transition due to its outstanding glass formation ability (GFA). Metallic glass (MG) thin films are mainly prepared using magnetron sputtering deposition methods. The outstanding mechanical properties of these MG thin films have gained the attention of the industry. In this study, molecular dynamic (MD) simulations were employed to investigate the growth of ZrxCu100-x(x=50, 70, and 90), with initial conditions similar to the experimental operating ones. The deposition process of the Zr-Cu system was performed on the Si (100) substrate. The simulated radial distribution functions (RDF) and X-ray diffraction (XRD) were adopted to analyze the phase of Zr-Cu films. Additionally, the correlation between GFA and five-fold local symmetry (FFLS) was discussed in depth. The mechanical properties of the deposited films and the effect of film thickness on the tensile process were also analyzed. The results show that the structure is composition-dependent. Both Zr50Cu50 and Zr70Cu30-deposited films exhibited amorphous properties with strong short range orders, whereas Zr90Cu10 -deposited film showed a perfect crystal characteristic. The positive correlation exists between GFA and degree of FFLS in binary Zr-Cu systems. Zr90Cu10 -deposited film has a Young's modulus of 100 GPa, which is larger than that of the other two deposited films. Deposited Zr-Cu MG films exhibited better ductility than crystalline ones. Herein, the failure strain of Zr-Cu MG films exceeded 40%. The correlation existed between GFA and mechanical strength. Deposited films with higher GFAs had greater strength at the same box size. Moreover, the Zr50Cu50 -deposited glass film had greater ultimate tensile strength than the near-eutectic glass film (Zr70Cu30). This study also shows that the deposited film exhibited a certain size effect. The size effect was detected, and when the thickness of the film was smaller, the tensile strength was greater. This study provides new ideas for the preparation of MG films with perfect mechanical properties.
-
Key words:
- metallic glass /
- molecular dynamic simulation /
- thin film growth /
- tensile behavior /
- size effect
-
圖 4 非晶沉積薄膜的力學性能. (a) 三種厚度Zr50Cu50沉積薄膜的應力應變曲線; (b) Zr50Cu50拉伸變形圖; (c) 三種厚度Zr70Cu30沉積薄膜的應力應變曲線; (d) Zr70Cu30拉伸變形圖
Figure 4. Mechanical properties of amorphous deposited films: (a) stress-strain curves of Zr50Cu50deposited MG films with three thicknesses; (b) deformation maps of Zr50Cu50; (c) stress-strain curves of Zr70Cu30deposited MG films with three thicknesses; (d) deformation maps of Zr70Cu30
表 1 沉積薄膜的元素組成和厚度
Table 1. Elemental compositions and thicknesses of deposited thin films
薄膜 Zr Cu 總原子數 薄膜厚度/nm Zr50Cu50 4675 4460 9135 5.5 Zr70Cu30 6496 2700 9196 6.4 Zr90Cu10 8229 900 9129 7.0 259luxu-164 -
參考文獻
[1] Xie L, Brault P, Thomann A L, et al. Molecular dynamic simulation of binary ZrxCu100-x metallic glass thin film growth. Appl Surf Sci, 2013, 274: 164 doi: 10.1016/j.apsusc.2013.03.004 [2] Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci, 2011, 56(4): 379 doi: 10.1016/j.pmatsci.2010.12.002 [3] Zeman P, Zítek M, Zuzjaková ?, et al. Amorphous Zr-Cu thinfilm alloys with metallic glass behavior. J Alloys Compd, 2017, 696: 1298 doi: 10.1016/j.jallcom.2016.12.098 [4] Xu D H, Lohwongwatana B, Duan G, et al. Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x=34, 36, 38. 2, 40 at. %) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater, 2004, 52(9): 2621 doi: 10.1016/j.actamat.2004.02.009 [5] Musil J, Daniel R. Structure and mechanical properties of magnetron sputtered Zr-Ti-Cu-N films. Surf Coat Technol, 2003, 166(2-3): 243 doi: 10.1016/S0257-8972(02)00819-8 [6] Eckert J, Das J, Kim K B, et al. High strength ductile Cu-base metallic glass. Intermetallics, 2006, 14(8-9): 876 doi: 10.1016/j.intermet.2006.01.003 [7] Karpe N, B?ttiger J, Krog J P, et al. Influence of deposition conditions and ion irradiation on thin films of amorphous Cu-Zr superconductors. Thin Solid Films, 1996, 275(1-2): 82 doi: 10.1016/0040-6090(95)07025-7 [8] Dudonis J, Bru?as R, Miniotas A. Synthesis of amorphous Zr-Cu alloys by magnetron co-sputtering. Thin Solid Films, 1996, 275(1-2): 164 doi: 10.1016/0040-6090(95)07033-8 [9] Apreutesei M, Djemia P, Belliard L, et al. Structural-elastic relationships of Zr-TL (TL=Cu, Co, Ni) thin films metallic glasses. J Alloys Compd, 2017, 707: 126 doi: 10.1016/j.jallcom.2016.12.208 [10] Aji D P B, Hirata A, Zhu F, et al. Ultrastrong and ultrastable metallic glass[J/OL]. Physics (2013-06)[2018-07-28]. https://arxiv.org/pdf/1306.1575 [11] Xie L, Brault P, Bauchire J M, et al. Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition. J Phys D Appl Phys, 2014, 47(22): 224004 doi: 10.1088/0022-3727/47/22/224004 [12] Hajlaoui K, Alsaleh N, Alrasheedi N H, et al. Coalescence and subsequent twinning of nanocrystals during deformation of CuZrbased metallic glasses: the grain size effect. J Non-Cryst Solids, 2017, 464: 39 doi: 10.1016/j.jnoncrysol.2017.03.019 [13] Sha Z D, Zhang Y W, Feng Y P, et al. Molecular dynamics studies of short to medium range order in Cu64Zr36 metallic glass. J Alloys Compd, 2011, 509(33): 8319 doi: 10.1016/j.jallcom.2011.05.071 [14] Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132(2-3): 233 doi: 10.1016/j.matchemphys.2011.11.021 [15] Tripathi M K, Chattopadhyay P P, Ganguly S. A predictable glass forming ability expression by statistical learning and evolutionary intelligence. Intermetallics, 2017, 90: 9 doi: 10.1016/j.intermet.2017.06.008 [16] Sha Z D, Feng Y P, Li Y. Statistical composition-structure-property correlation and glass-forming ability based on the full icosahedra in Cu-Zr metallic glasses. Appl Phys Lett, 2010, 96(6): 061903 doi: 10.1063/1.3310278 [17] Almyras G A, Lekka C E, Mattern N, et al. On the microstructure of the Cu65Zr35 and Cu35Zr65 metallic glasses. Scripta Mater, 2010, 62(1): 33 doi: 10.1016/j.scriptamat.2009.09.019 [18] Pan J, Wang Y X, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass. Nature Commun, 2018, 9(1): 560 doi: 10.1038/s41467-018-02943-4 [19] Wu T W, Feng S D, Qi L, et al. The compressive behaviour after crystallisation in Zr85Cu15 metallic glasses studied by molecular dynamics simulations. J Non-Cryst Solids, 2017, 468: 41 doi: 10.1016/j.jnoncrysol.2017.04.024 [20] Zhong C, Zhang H, Cao Q P, et al. The size-dependent non-localized deformation in a metallic alloy. Scripta Mater, 2015, 101: 48 doi: 10.1016/j.scriptamat.2015.01.015 [21] Yang G J, Xu B, Kong L T, et al. Size effects in Cu50Zr50 metallic glass films revealed by molecular dynamics simulations. J Alloys Compd, 2016, 688: 88 http://www.sciencedirect.com/science/article/pii/S0925838816322149 [22] Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass. Nature Mater, 2007, 6: 735 doi: 10.1038/nmat1984 [23] Liu M. ZrCu Block Amorphous Alloy Structure and Mechanical Properties of Molecular Dynamics Simulation[Dissertation]. Qinhuangdao: Yanshan University, 2012劉美. ZrCu塊體非晶合金結構及力學性能的分子動力學模擬[學位論文]. 秦皇島: 燕山大學, 2012 [24] Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses. Acta Metall Sin, 2016, 52(10): 1171 doi: 10.11900/0412.1961.2016.00348張哲峰, 屈瑞濤, 劉增乾. 金屬玻璃的斷裂行為與強度理論研究進展. 金屬學報, 2016, 52(10): 1171 doi: 10.11900/0412.1961.2016.00348 [25] Zhang Z F, Wu F F, Fan J T, et al. Deformation and fracture of amorphous alloy materials. Sci China (Series G Phys Mech Astron), 2008, 38(4): 349 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804002.htm張哲峰, 伍復發, 范吉堂, 等. 非晶合金材料的變形與斷裂. 中國科學(G輯: 物理學力學天文學), 2008, 38(4): 349 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804002.htm [26] Utz M, Peng Q, Nandagopal M. Athermal simulation of plastic deformation in amorphous solids at constant pressure. J Polym Sci Part B Polym Phys, 2004, 42(11): 2057 doi: 10.1002/polb.20092 [27] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1): 1 doi: 10.1006/jcph.1995.1039 [28] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modell Simul Mater Sci Eng, 2010, 18(1): 015012 doi: 10.1088/0965-0393/18/1/015012 [29] Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81(8): 3684 doi: 10.1063/1.448118 [30] Finney J L. Modelling the structures of amorphous metals and alloys. Nature, 1977, 266(5600): 309 doi: 10.1038/266309a0 [31] Daw M S, Baskes M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B, 1984, 29(12): 6443 doi: 10.1103/PhysRevB.29.6443 [32] Graves D B, Brault P. Molecular dynamics for low temperature plasma-surface interaction studies. J Phys D Appl Phys, 2009, 42(19): 194011 doi: 10.1088/0022-3727/42/19/194011 [33] Zhen S, Davies G J. Calculation of the Lennard-Jones n-m potential energy parameters for metals. Phys Status Solidi A, 1983, 78(2): 595 doi: 10.1002/pssa.2210780226 [34] Zhou H F, Zhong C, Cao Q P, et al. Non-localized deformation in metallic alloys with amorphous structure. Acta Mater, 2014, 68: 32 doi: 10.1016/j.actamat.2014.01.003 [35] Turchanin A A, Tomilin I A, Turchanin M A, et al. Enthalpies of formation of liquid and amorphous Cu-Zr alloys. J Non-Cryst Solids, 1999, 250-252: 582 doi: 10.1016/S0022-3093(99)00136-2 [36] Ge L, Hui X D, Chen G L, et al. Prediction of the glass forming ability of Cu-Zr binary alloys. Acta Phys-Chim Sin, 2007, 23(6): 895 https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200706018.htm葛麗, 惠希東, 陳國良, 等. Cu-Zr二元系非晶合金的玻璃形成能力預測. 物理化學學報, 2007, 23(6): 895 https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200706018.htm [37] Spaepen F. Five-fold symmetry in liquids. Nature, 2000, 408(6814): 781 doi: 10.1038/35048652 -