<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

SBA-15脫除超細顆粒的機制研究

邢奕 崔永康 蘇偉 尹麗鯤 劉應書 李子宜 路培

邢奕, 崔永康, 蘇偉, 尹麗鯤, 劉應書, 李子宜, 路培. SBA-15脫除超細顆粒的機制研究[J]. 工程科學學報, 2020, 42(3): 313-320. doi: 10.13374/j.issn2095-9389.2019.04.01.004
引用本文: 邢奕, 崔永康, 蘇偉, 尹麗鯤, 劉應書, 李子宜, 路培. SBA-15脫除超細顆粒的機制研究[J]. 工程科學學報, 2020, 42(3): 313-320. doi: 10.13374/j.issn2095-9389.2019.04.01.004
XING Yi, CUI Yong-kang, SU Wei, YIN Li-kun, LIU Ying-shu, LI Zi-yi, LU Pei. Study of the mechanism of removing ultrafine particles using SBA-15[J]. Chinese Journal of Engineering, 2020, 42(3): 313-320. doi: 10.13374/j.issn2095-9389.2019.04.01.004
Citation: XING Yi, CUI Yong-kang, SU Wei, YIN Li-kun, LIU Ying-shu, LI Zi-yi, LU Pei. Study of the mechanism of removing ultrafine particles using SBA-15[J]. Chinese Journal of Engineering, 2020, 42(3): 313-320. doi: 10.13374/j.issn2095-9389.2019.04.01.004

SBA-15脫除超細顆粒的機制研究

doi: 10.13374/j.issn2095-9389.2019.04.01.004
基金項目: 國家重點研發計劃資助項目(2017YFC0210301);國家青年科學基金資助項目(21707007)
詳細信息
    通訊作者:

    Email:suwei3007@163.com

  • 中圖分類號: X513

Study of the mechanism of removing ultrafine particles using SBA-15

More Information
  • 摘要: 利用掃描電遷移率顆粒物粒徑譜儀(SMPS),針對不同孔徑的介孔材料SBA-15,探索對UFPs(2.5~25 nm)的去除效率及脫除機理,以期為介孔材料過濾脫除UFPs在鋼鐵工業顆粒物超低排放控制的應用提供理論基礎。基于實驗結果及表征分析得知:UFPs入孔效應使大孔徑介孔過濾介質效率更佳;介孔材料孔徑端部內外表面存在大量UFPs親和位點,提高端部復雜程度有利于提升材料過濾性能;氮氣的有無對UFPs去除結果基本沒有影響;介孔的存在使UFPs擴散效應更強,顆粒入孔使擴散系數增加,故UFPs在介孔材料實際擴散結果與傳統擴散模式理論值(m=?2/3)不同。

     

  • 圖  1  超細顆粒過濾實驗系統流程示意圖

    Figure  1.  Schematic diagram of the experimental setup for particle removal efficiency measurement system

    圖  2  多分散性UFPs的粒徑分布圖

    Figure  2.  Particle size distribution of polydisperse UFPs

    圖  3  UFPs總脫除效率隨時間變化趨勢圖

    Figure  3.  Total removal efficiency of UFPs as a function of time

    圖  4  三種孔徑SBA-15對UFPs的單粒徑脫除效率曲線

    Figure  4.  Removal efficiency curves of three pore sizes of SBA-15 for UFPs with a single particle size

    圖  5  不同孔徑下原始SBA-15的透射電鏡表征結果

    Figure  5.  TEM characterization of the original SBA-15 with different pore sizes

    圖  6  不同孔徑下過濾顆粒物后SBA-15的透射電鏡表征結果

    Figure  6.  TEM characterization of SBA-15 after filtration of particulate matter with different pore sizes

    圖  7  不同孔徑SBA-15在有無N2條件下對UFPs脫除總效率

    Figure  7.  Total removal efficiency of SBA-15 for UFPs with or without N2 with different pore sizes

    圖  8  不同風速下SBA-15-10.8對UFPs的單粒徑脫除效率

    Figure  8.  Removal efficiency of SBA-15-10.8 for UFPs with the same particle size under different flow velocity

    圖  9  不同風速下SBA-15-10.8對3~8 nm顆粒的單球效率(ηd)與Peclet數(Pe)的擬合曲線

    Figure  9.  Fitting curves of single sphere efficiency (ηd) and Peclet number (Pe) for 3–8 nm particles by SBA-15-10.8 under different flow velocity

    表  1  過濾顆粒物前后SBA-15的BET表征結果

    Table  1.   BET characterization of SBA-15 before and after filtration of particulate matter

    MaterialsPore width before filtering/nmPore width after filtering/nmPore volume before filtering/(cm3?g?1)Pore volume after filtering/(cm3?g?1)Pore volume reduction/(cm3?g?1)
    SBA-15-5.84~64~60.61220.47690.1353
    SBA-15-10.88~128~121.19640.91000.2864
    SBA-15-17.714~2514~252.00411.52610.4780
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Duan W J, Lang J L, Cheng S Y, et al. Air pollutant emission inventory from iron and steel industry in the Beijing-Tianjin-Hebei region and is impact on PM2.5. Environ Sci, 2018, 39(4): 1445

    段文嬌, 郎建壘, 程水源, 等. 京津冀地區鋼鐵行業污染物排放清單及對PM2.5影響. 環境科學, 2018, 39(4):1445
    [2] Qiu L P. Development and Assessment of the City-Scale Emission Inventory of Anthropogenic Air Pollutants: A Case Study of Nanjing[Dissertation]. Nanjing: Nanjing University, 2015

    仇麗萍. 城市大氣污染物排放清單建立及評估——以南京市為例[學位論文]. 南京: 南京大學, 2015
    [3] Sun Z, Xie X F, Yang W J, et al. Size distribution and number emission characteristics of ultrafine particles from coal combustion. Acta Sci Circum, 2014, 34(12): 3126

    孫在, 謝小芳, 楊文俊, 等. 煤燃燒超細顆粒物的粒徑分布及數濃度排放特征試驗. 環境科學學報, 2014, 34(12):3126
    [4] Zhang R, Tang L L, Xu H B, et al. Hygroscopic properties of urban aerosol in Nanjing during wintertime. Acta Sci Circum, 2018, 38(1): 32

    張茹, 湯莉莉, 許漢冰, 等. 冬季南京城市大氣氣溶膠吸濕性觀測研究. 環境科學學報, 2018, 38(1):32
    [5] Yan P, Pan X L, Tang J, et al. Hygroscopic growth of aerosol scattering coefficient: a comparative analysis between urban and suburban sites at winter in Beijing. Particuology, 2009, 7(1): 52 doi: 10.1016/j.partic.2008.11.009
    [6] He J Q, Yu X N, Zhu B, et al. Characteristics of aerosol extinction and low visibility in haze weather in winter of Nanjing. China Environ Sci, 2016, 36(6): 1645 doi: 10.3969/j.issn.1000-6923.2016.06.008

    何鎵祺, 于興娜, 朱彬, 等. 南京冬季氣溶膠消光特性及霾天氣低能見度特征. 中國環境科學, 2016, 36(6):1645 doi: 10.3969/j.issn.1000-6923.2016.06.008
    [7] Yang F M, Ouyang W J, Wang H B, et al. Recent progress in research on impact of atmospheric particulate matters on visibility. J Eng Studies, 2013, 5(3): 252 doi: 10.3724/SP.J.1224.2013.00252

    楊復沫, 歐陽文娟, 王歡博, 等. 大氣顆粒物對能見度影響的研究進展. 工程研究-跨學科視野中的工程, 2013, 5(3):252 doi: 10.3724/SP.J.1224.2013.00252
    [8] Shen L, Gu F, Zhang J H, et al. The effect of relative humidity on the extinction coefficient of aerosols. J Light Scatt, 2017, 29(3): 251

    沈雷, 顧芳, 張加宏, 等. 相對濕度對大氣氣溶膠消光系數的影響. 光散射學報, 2017, 29(3):251
    [9] Fan X H, Gan M, Ji Z Y, et al. The rules of super fine particulate emission from sintering flue gas and its physicochemical properties. Sintering Pelletizing, 2016, 41(3): 42

    范曉慧, 甘敏, 季志云, 等. 燒結煙氣超細顆粒物排放規律及其物化特性. 燒結球團, 2016, 41(3):42
    [10] Wang C S, Otani Y. Removal of nanoparticles from gas streams by fibrous filters: a review. Ind Eng Chem Res, 2013, 52(1): 5 doi: 10.1021/ie300574m
    [11] Kim C, Pui D Y H. Experimental study on the filtration efficiency of activated carbons for 3-30 nm particles. Carbon, 2015, 93: 226 doi: 10.1016/j.carbon.2015.05.048
    [12] Givehchi R, Li Q H, Tan Z C. The effect of electrostatic forces on filtration efficiency of granular filters. Powder Technol, 2015, 277: 135 doi: 10.1016/j.powtec.2015.01.074
    [13] Innocentini M D D M, Coury J R, Fukushima M, et al. High-efficiency aerosol filters based on silicon carbide foams coated with ceramic nanowires. Sep Purif Technol, 2015, 152: 180 doi: 10.1016/j.seppur.2015.08.027
    [14] Xing Y, Wang C, Lu P, et al. Removing nano particles by filtration using materials with ordered mesoporous structure. Environ Sci, 2016, 37(12): 4538

    邢奕, 王驄, 路培, 等. 有序介孔材料過濾脫除納米顆粒物. 環境科學, 2016, 37(12):4538
    [15] Lee K W, Gieseke J A. Collection of aerosol particles by packed beds. Environ Sci Technol, 1979, 13(4): 466 doi: 10.1021/es60152a013
    [16] Xing Y, Yu H, Lu P, et al. Experimental research on purifying ultrafine nanoparticle by SBA-15 and its filtration mechanism. Powder Technol, 2018, 330: 32 doi: 10.1016/j.powtec.2018.02.031
    [17] Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev, 2009, 38(5): 1477 doi: 10.1039/b802426j
    [18] Zhang L, Ji Y Q, Li Y Y, et al. A comparative study on the elements of PM2.5 in two sampling methods of steel dust. China Environ Sci, 2018, 38(12): 4426 doi: 10.3969/j.issn.1000-6923.2018.12.004

    張蕾, 姬亞芹, 李越洋, 等. 鋼鐵冶煉塵兩種采樣方法PM2.5中元素的比較研究. 中國環境科學, 2018, 38(12):4426 doi: 10.3969/j.issn.1000-6923.2018.12.004
    [19] Kim C, Kang S, Pui D Y H. Removal of airborne sub-3nm particles using fibrous filters and granular activated carbons. Carbon, 2016, 104: 125 doi: 10.1016/j.carbon.2016.03.060
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  1044
  • HTML全文瀏覽量:  1071
  • PDF下載量:  39
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-04-01
  • 刊出日期:  2020-03-01

目錄

    /

    返回文章
    返回