-
摘要: 利用掃描電遷移率顆粒物粒徑譜儀(SMPS),針對不同孔徑的介孔材料SBA-15,探索對UFPs(2.5~25 nm)的去除效率及脫除機理,以期為介孔材料過濾脫除UFPs在鋼鐵工業顆粒物超低排放控制的應用提供理論基礎。基于實驗結果及表征分析得知:UFPs入孔效應使大孔徑介孔過濾介質效率更佳;介孔材料孔徑端部內外表面存在大量UFPs親和位點,提高端部復雜程度有利于提升材料過濾性能;氮氣的有無對UFPs去除結果基本沒有影響;介孔的存在使UFPs擴散效應更強,顆粒入孔使擴散系數增加,故UFPs在介孔材料實際擴散結果與傳統擴散模式理論值(m=?2/3)不同。Abstract: In 2017, China's industrial dust emissions accounted for 7.96 million tons, of which the iron and steel industry contributed approximately 25%. Particulate matter discharged from the iron and steel industry is mostly of a small size, high in temperature, and complex in composition. The mass concentration of ultrafine particles (UFPs) with particle sizes that are less than 0.1 μm is low; however, the proportion of quantity concentration can be as high as 90%. Currently, the commonly used bag filters and electrostatic precipitators are not sufficiently efficient at collecting fine particles. Additionally, owing to the larger specific surface area of fine dust particles, they easily become carriers of adsorbing harmful gases, which has a greater impact on the environment and human health; thus, it is imperative to determine a simple and efficient filtration method to remove ultrafine particles. In this paper, the removal efficiency and mechanism of UFPs (2.5–25 nm) were investigated by using a scanning electromobility particle size spectrometer (SMPS) test system for SBA-15 for different pore sizes. This was done to provide a theoretical basis for the application of mesoporous materials in the control of ultra-low emission of particulate matter in the iron and steel industry. Based on the experimental results and characterization analysis, it is found that a mesoporous filtration medium with a large pore size is more efficient at affecting UFPs entry. There are many affinity sites for UFPs on the inner and outer surfaces of mesoporous materials with a specific pore size. Increasing the complexity of the ends is beneficial for improve the filtration performance of the materials. The presence or absence of nitrogen has little effect on the removal of UFPs. The diffusion effect of UFPs is stronger owing to the existence of mesoporous particles, and the diffusion coefficient is increased when particles enter the pore. Therefore, there is a difference between the theoretical exponent (m= ?2/3) in the traditional model for particle diffusion and the actual diffusion results of UFPs in mesoporous materials.
-
表 1 過濾顆粒物前后SBA-15的BET表征結果
Table 1. BET characterization of SBA-15 before and after filtration of particulate matter
Materials Pore width before filtering/nm Pore width after filtering/nm Pore volume before filtering/(cm3?g?1) Pore volume after filtering/(cm3?g?1) Pore volume reduction/(cm3?g?1) SBA-15-5.8 4~6 4~6 0.6122 0.4769 0.1353 SBA-15-10.8 8~12 8~12 1.1964 0.9100 0.2864 SBA-15-17.7 14~25 14~25 2.0041 1.5261 0.4780 259luxu-164 -
參考文獻
[1] Duan W J, Lang J L, Cheng S Y, et al. Air pollutant emission inventory from iron and steel industry in the Beijing-Tianjin-Hebei region and is impact on PM2.5. Environ Sci, 2018, 39(4): 1445段文嬌, 郎建壘, 程水源, 等. 京津冀地區鋼鐵行業污染物排放清單及對PM2.5影響. 環境科學, 2018, 39(4):1445 [2] Qiu L P. Development and Assessment of the City-Scale Emission Inventory of Anthropogenic Air Pollutants: A Case Study of Nanjing[Dissertation]. Nanjing: Nanjing University, 2015仇麗萍. 城市大氣污染物排放清單建立及評估——以南京市為例[學位論文]. 南京: 南京大學, 2015 [3] Sun Z, Xie X F, Yang W J, et al. Size distribution and number emission characteristics of ultrafine particles from coal combustion. Acta Sci Circum, 2014, 34(12): 3126孫在, 謝小芳, 楊文俊, 等. 煤燃燒超細顆粒物的粒徑分布及數濃度排放特征試驗. 環境科學學報, 2014, 34(12):3126 [4] Zhang R, Tang L L, Xu H B, et al. Hygroscopic properties of urban aerosol in Nanjing during wintertime. Acta Sci Circum, 2018, 38(1): 32張茹, 湯莉莉, 許漢冰, 等. 冬季南京城市大氣氣溶膠吸濕性觀測研究. 環境科學學報, 2018, 38(1):32 [5] Yan P, Pan X L, Tang J, et al. Hygroscopic growth of aerosol scattering coefficient: a comparative analysis between urban and suburban sites at winter in Beijing. Particuology, 2009, 7(1): 52 doi: 10.1016/j.partic.2008.11.009 [6] He J Q, Yu X N, Zhu B, et al. Characteristics of aerosol extinction and low visibility in haze weather in winter of Nanjing. China Environ Sci, 2016, 36(6): 1645 doi: 10.3969/j.issn.1000-6923.2016.06.008何鎵祺, 于興娜, 朱彬, 等. 南京冬季氣溶膠消光特性及霾天氣低能見度特征. 中國環境科學, 2016, 36(6):1645 doi: 10.3969/j.issn.1000-6923.2016.06.008 [7] Yang F M, Ouyang W J, Wang H B, et al. Recent progress in research on impact of atmospheric particulate matters on visibility. J Eng Studies, 2013, 5(3): 252 doi: 10.3724/SP.J.1224.2013.00252楊復沫, 歐陽文娟, 王歡博, 等. 大氣顆粒物對能見度影響的研究進展. 工程研究-跨學科視野中的工程, 2013, 5(3):252 doi: 10.3724/SP.J.1224.2013.00252 [8] Shen L, Gu F, Zhang J H, et al. The effect of relative humidity on the extinction coefficient of aerosols. J Light Scatt, 2017, 29(3): 251沈雷, 顧芳, 張加宏, 等. 相對濕度對大氣氣溶膠消光系數的影響. 光散射學報, 2017, 29(3):251 [9] Fan X H, Gan M, Ji Z Y, et al. The rules of super fine particulate emission from sintering flue gas and its physicochemical properties. Sintering Pelletizing, 2016, 41(3): 42范曉慧, 甘敏, 季志云, 等. 燒結煙氣超細顆粒物排放規律及其物化特性. 燒結球團, 2016, 41(3):42 [10] Wang C S, Otani Y. Removal of nanoparticles from gas streams by fibrous filters: a review. Ind Eng Chem Res, 2013, 52(1): 5 doi: 10.1021/ie300574m [11] Kim C, Pui D Y H. Experimental study on the filtration efficiency of activated carbons for 3-30 nm particles. Carbon, 2015, 93: 226 doi: 10.1016/j.carbon.2015.05.048 [12] Givehchi R, Li Q H, Tan Z C. The effect of electrostatic forces on filtration efficiency of granular filters. Powder Technol, 2015, 277: 135 doi: 10.1016/j.powtec.2015.01.074 [13] Innocentini M D D M, Coury J R, Fukushima M, et al. High-efficiency aerosol filters based on silicon carbide foams coated with ceramic nanowires. Sep Purif Technol, 2015, 152: 180 doi: 10.1016/j.seppur.2015.08.027 [14] Xing Y, Wang C, Lu P, et al. Removing nano particles by filtration using materials with ordered mesoporous structure. Environ Sci, 2016, 37(12): 4538邢奕, 王驄, 路培, 等. 有序介孔材料過濾脫除納米顆粒物. 環境科學, 2016, 37(12):4538 [15] Lee K W, Gieseke J A. Collection of aerosol particles by packed beds. Environ Sci Technol, 1979, 13(4): 466 doi: 10.1021/es60152a013 [16] Xing Y, Yu H, Lu P, et al. Experimental research on purifying ultrafine nanoparticle by SBA-15 and its filtration mechanism. Powder Technol, 2018, 330: 32 doi: 10.1016/j.powtec.2018.02.031 [17] Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev, 2009, 38(5): 1477 doi: 10.1039/b802426j [18] Zhang L, Ji Y Q, Li Y Y, et al. A comparative study on the elements of PM2.5 in two sampling methods of steel dust. China Environ Sci, 2018, 38(12): 4426 doi: 10.3969/j.issn.1000-6923.2018.12.004張蕾, 姬亞芹, 李越洋, 等. 鋼鐵冶煉塵兩種采樣方法PM2.5中元素的比較研究. 中國環境科學, 2018, 38(12):4426 doi: 10.3969/j.issn.1000-6923.2018.12.004 [19] Kim C, Kang S, Pui D Y H. Removal of airborne sub-3nm particles using fibrous filters and granular activated carbons. Carbon, 2016, 104: 125 doi: 10.1016/j.carbon.2016.03.060 -