<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

具有核殼結構的FeS2微米球與碳納米管原位復合介孔材料的構建及其在鋰離子電池中的應用

官亮亮 魯建豪 連芳

官亮亮, 魯建豪, 連芳. 具有核殼結構的FeS2微米球與碳納米管原位復合介孔材料的構建及其在鋰離子電池中的應用[J]. 工程科學學報, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009
引用本文: 官亮亮, 魯建豪, 連芳. 具有核殼結構的FeS2微米球與碳納米管原位復合介孔材料的構建及其在鋰離子電池中的應用[J]. 工程科學學報, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009
GUAN Liang-liang, LU Jian-hao, LIAN Fang. Mesoporous composite of core-shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries[J]. Chinese Journal of Engineering, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009
Citation: GUAN Liang-liang, LU Jian-hao, LIAN Fang. Mesoporous composite of core-shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries[J]. Chinese Journal of Engineering, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009

具有核殼結構的FeS2微米球與碳納米管原位復合介孔材料的構建及其在鋰離子電池中的應用

doi: 10.13374/j.issn2095-9389.2019.04.009
基金項目: 

國家自然科學基金資助項目 51872026

國家重點研發計劃資助項目 2018YFB0104302

詳細信息
    通訊作者:

    連芳, E-mail: lianfang@mater.ustb.edu.cn

  • 中圖分類號: TG142.71

Mesoporous composite of core-shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries

More Information
  • 摘要: 通過簡單的水熱反應原位合成了具有核殼結構的FeS2微米球與多壁碳納米管復合的介孔材料(C-S-FeS2@ MWCNT).FeS2微米球表面由納米片狀顆粒堆疊形成的厚度為~350 nm殼層, 以及以化學鍵的形式吸附在微球表面的碳納米管共同構成了材料保護層.保護層具有豐富的官能團和大量的孔隙結構, 保證了鋰離子擴散通道, 并有效抑制了體積膨脹.C-S-FeS2@ MWCNT在200 mA·g-1的電流密度下, 250次循環可逆容量達到638 mA·h·g-1, 倍率性能也得到明顯改善, 為過渡金屬硫化物電極材料的微米化設計和體積能量密度的提升提供了可能.

     

  • 圖  1  C-S-FeS2@MWCNT的X射線衍射圖(a) 和拉曼曲線(b)

    Figure  1.  X-ray diffraction patterns (a) and Raman spectrum (b) of C-S-FeS2@MWCNT

    圖  2  C-S-FeS2@MWCNT樣品的微觀形貌和元素分布情況, 以及FeS2/MWCNT微觀形貌圖. (a, b) 完整微球掃描電鏡圖; (c) FeS2/MWCNT樣品研磨破碎后微球掃描電鏡圖; (d) C-S-FeS2@MWCNT樣品研磨破碎后微球掃描電鏡圖; (e) 透射電鏡圖; (f) 截面掃描電鏡圖; (g~i) 能譜圖

    Figure  2.  Microstructure and element distribution of C-S-FeS2@MWCNT samples, as well as the microstructure diagram of FeS2/MWCNT: (a, b) SEM images; (c) SEM images of FeS2/MWCNT; (d) SEM images of the cracked particles by grinding; (e) TEM images; (f) SEM images of cross section; (g-i) EDS analysis of C-S-FeS2@MWCNT samples

    圖  3  C-S-FeS2@MWCNT和FeS2/MWCNT的吸附曲線、孔徑分布情況以及熱重曲線. (a) C-S-FeS2@MWCNT氮吸附-解吸等溫線以及孔徑分布(插入圖); (b) FeS2/MWCNT氮吸附-解吸等溫線以及孔徑分布(插入圖); (c) 熱重曲線

    Figure  3.  Adsorption curves, pore size distribution and thermogravimetric curves of C-S-FeS2@MWCNT and FeS2/MWCNT: (a) nitrogen adsorption-desorption isotherm and pore size distribution (insert figure) of C-S-FeS2@MWCNT; (b) isotherm of nitrogen adsorption-desorption and pore size distribution of FeS2/MWCNT (insert figure); (c) thermogravimetric curve

    圖  4  C-S-FeS2@MWCNT的X射線光電子能譜圖. (a) Fe 2p; (b) S 2p; (c) C 1s

    Figure  4.  XPS of C-S-FeS2@MWCNT: (a) Fe 2p; (b) S 2p; (c) C 1s

    圖  5  C-S-FeS2@MWCNT和FeS2/MWCNT的電化學性能. (a) C-S-FeS2@MWCNT電池的倍率性能; (b) C-S-FeS2@MWCNT和FeS2/MWCNT在1.0~3.0 V、500 m A·g-1電流密度下的循環性能對比; (c) C-S-FeS2@MWCNT在1.0~3.0 V、200 m·Ag-1電流密度下的長期循環性能

    Figure  5.  Electrochemical properties of C-S-FeS2@MWCNT and FeS2/MWCNT: (a) rate capacity of C-S-FeS2@MWCNT cells; (b) cycling performances of C-S-FeS2@MWCNT and FeS2/MWCNT at 500 m A·g-1between 1.0 V and 3.0 V; (c) long-term cycling performances of C-S-FeS2@MWCNT at 200 m A·g-1between 1.0 V and 3.0 V

    圖  6  C-S-FeS2@MWCNT和FeS2/MWCNT的交流阻抗譜

    Figure  6.  Nyquist plots of C-S-FeS2@MWCNT and FeS2/MWCNT

    圖  7  C-S-FeS2@MWCNT在1.0~3.0 V、500 m A·g-1電流密度下100次循環后的掃描電鏡圖. (a) 10000倍; (b) 30000倍

    Figure  7.  SEM images of the C-S-FeS2@MWCNT electrode after 100 cycles at 500 m Ag-1between 1.0 V and 3.0 V: (a) 10000 magnification; (b) 30000 magnification

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhang SS, Tran D T. Mechanism and solution for the capacity fading of Li/FeS2 battery. J Electrochem Soc, 2016, 163(5): A792 doi: 10.1149/2.0041606jes
    [2] Tan R, Yang J L, Hu J T, et al. Core-shell nano-FeS2@ Ndoped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chem Commun, 2016, 52(5): 986 doi: 10.1039/C5CC08002A
    [3] Fong R, Dahn J R, Jones C H W. Electrochemistry of pyritebased cathodes for ambient temperature lithium batteries. J Electrochem Soc, 1989, 136(11): 3206 doi: 10.1149/1.2096426
    [4] Hu Z, Zhang K, Zhu Z Q, et al. FeS2 microspheres with an etherbased electrolyte for high-performance rechargeable lithium batteries. J Mater Chem A, 2015, 3(24): 12898 doi: 10.1039/C5TA02169C
    [5] Hu Z, Zhu Z Q, ChengF Y, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ Sci, 2015, 8: 1309 doi: 10.1039/C4EE03759F
    [6] Tomczuk Z, Tani B, Otto N C, et al. Phase relationships in positive electrodes of high temperature Li-Al/LiCl-KCl/ FeS2 cells. J Electrochem Soc, 1982, 129(5): 925 doi: 10.1149/1.2124067
    [7] Cabana J, Monconduit L, Larcher D, et al. Beyond intercalationbased Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22(35): E170 doi: 10.1002/adma.201000717
    [8] ZhangFF, Huang G, Wang X X, et al. Sulfur-impregnated coreshell hierarchical porous carbon for lithium-sulfur batteries. ChemEur J, 2014, 20(52): 17523 http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM25346404.aspx
    [9] Liang X, Liu Y, Wen Z Y, et al. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries. J Power Sources, 2011, 196(16): 6951 doi: 10.1016/j.jpowsour.2010.11.132
    [10] Wang L N, Wang Y G, Xia Y Y. A high performance lithiumion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ Sci, 2015, 8(5): 1551 doi: 10.1039/C5EE00058K
    [11] Zhang D, Mai Y J, Xiang J Y, et al. FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity. J Power Sources, 2012, 217: 229 doi: 10.1016/j.jpowsour.2012.05.112
    [12] Chen T, Zhang Z W, Cheng B R, et al. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J Am Chem Soc, 2017, 139(36): 12710 doi: 10.1021/jacs.7b06973
    [13] Ahn I S, Kim D W, Kang D K, et al. The effects of the particle size and active materials on the discharge properties of the Li/Fe(X)S2 electrode. Met Mater Int, 2008, 14(1): 65 doi: 10.3365/met.mat.2008.02.065
    [14] Xu L, Hu Y J, Zhang H X, et al. Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustainable Chem Eng, 2016, 4 (8): 4251 doi: 10.1021/acssuschemeng.6b00741
    [15] Li L, Cabán-Acevedo M, Girard SN, et al. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale, 2014, 6(4): 2112 doi: 10.1039/C3NR05851D
    [16] Mai L Q, Tian X C, Xu X, et al. Nanowire electrodes for elec-trochemical energy storage devices. Chem Rev, 2014, 114(23): 11828 doi: 10.1021/cr500177a
    [17] Zhang CF, Wang Z Y, Guo Z P, et al. Synthesis of MoS2-C one-dimensional nanostructures with improved lithium storage properties. ACS Appl Mater Interfaces, 2012, 4(7): 3765 doi: 10.1021/am301055z
    [18] Xu X, Cai T W, Meng Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J Power Sources, 2016, 331: 366 doi: 10.1016/j.jpowsour.2016.09.015
    [19] JinF Y, Wang Y. Topotactical conversion of carbon coatedFebased electrodes on graphene aerogels for lithium ion storage. J Mater Chem A, 2015, 3(28): 14741 doi: 10.1039/C5TA03605D
    [20] Liu L, Yuan Z Z, Qiu C X, et al. A novel FeS2/CNT microspherical cathode material with enhanced electrochemical characteristics for lithium-ion batteries. Solid State Ionics, 2013, 241: 25 doi: 10.1016/j.ssi.2013.03.031
    [21] Zhu Y J, Fan X L, Suo L M, et al. Electrospun FeS2@ carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano, 2015, 10(1): 1529 doi: 10.1021/acsnano.5b07081
    [22] Lu J H, LianF, Guan L L, et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages. J Mater Chem A, 2019, 7(3): 991 doi: 10.1039/C8TA09955C
    [23] Kahlweit M. Ostwald ripening of precipitates. Adv Colloid Interface Sci, 1975, 5(1): 1 doi: 10.1016/0001-8686(75)85001-9
    [24] Xu X, Meng Z, Zhu X L, et al. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery. J Power Sources, 2018, 380: 12 doi: 10.1016/j.jpowsour.2018.01.057
    [25] Xu X J, Liu J, Liu Z B, et al. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano, 2017, 11(9): 9033 doi: 10.1021/acsnano.7b03530
    [26] ZhangFF, Wang C L, Huang G, et al. FeS2@ C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries. J Power Sources, 2016, 328: 56 doi: 10.1016/j.jpowsour.2016.07.117
    [27] Pan G X, CaoF, Xia X H, et al. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries. J Power Sources, 2016, 332: 383 doi: 10.1016/j.jpowsour.2016.09.126
    [28] Xu X, Cai T W, Meng Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J Power Sources, 2016, 331: 366 doi: 10.1016/j.jpowsour.2016.09.015
    [29] Zhang X C, Shyy W, Sastry A M. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc, 2007, 154(10): A910 doi: 10.1149/1.2759840
  • 加載中
圖(7)
計量
  • 文章訪問數:  1003
  • HTML全文瀏覽量:  558
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-11-22
  • 刊出日期:  2019-04-15

目錄

    /

    返回文章
    返回