Mesoporous composite of core-shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries
-
摘要: 通過簡單的水熱反應原位合成了具有核殼結構的FeS2微米球與多壁碳納米管復合的介孔材料(C-S-FeS2@ MWCNT).FeS2微米球表面由納米片狀顆粒堆疊形成的厚度為~350 nm殼層, 以及以化學鍵的形式吸附在微球表面的碳納米管共同構成了材料保護層.保護層具有豐富的官能團和大量的孔隙結構, 保證了鋰離子擴散通道, 并有效抑制了體積膨脹.C-S-FeS2@ MWCNT在200 mA·g-1的電流密度下, 250次循環可逆容量達到638 mA·h·g-1, 倍率性能也得到明顯改善, 為過渡金屬硫化物電極材料的微米化設計和體積能量密度的提升提供了可能.Abstract: Pyrite (FeS2) is considered to be an excellent electrode material candidate for energy storage devices because of its abundant resources, cost effectiveness, environmental friendliness and high theoretical capacity of 894 mA·h·g-1 based on conversiontype reactions.However, transition metal sulfides (TMSs), includingFeS2, suffer from low electronic conductivity, sluggish Li ion transfer kinetics, and severe volume change while charging and discharging, which contribute to the sharp decline in capacity as well as limit its application as electrode material for secondary batteries.Downsizing TMS powders to the nanoscale becomes a common strategy to mitigate the volume change and maximize the proportion of active material involved in the electrochemical process.However, nanostructures lead to a serious interphase detrimental reaction, dissolution of the polysulfide intermediates, and low volumetric energy density.Therefore, micron particles are critical to the design of high energy density active material in view of industrial applications.In this study, a facile hydrothermal method has been successfully developed to synthesize a novel mesoporous composite of core-shell FeS2 micron spheres with multi-walled carbon nanotubes (C-S-FeS2@ MWCNT).The protective layer is constructed on FeS2 micron spheres consisting of the approximately 350 nm-thickness shell stacked by nanosheet FeS2 particles and the reticular MWCNTs anchored via chemical binding.The FeS2 content is determined using thermogravimetric analysis to be 73.4% of the C-S-FeS2@ MWCNT composite, which is higher than the value of the reported compound material with nanopowder.The unique architecture with abundant functional groups and pore structures not only provides the Li+ ion diffusion pathway but also buffers volume expansion during cycling.The galvanostatic circulation tests indicate that the C-S-FeS2@ MWCNT electrode delivers a high reversible capacity of 638 mA·h·g-1 in 250 cycles at a current density of 200 mA·g-1 and exhibits a significantly improved rate performance.This work demonstrates a new method to develop TMSmicron electrode material with high volumetric energy density.
-
Key words:
- ferrous iron disulfide /
- carbon nanotubes /
- lithium ion batteries /
- core-shell structure
-
圖 2 C-S-FeS2@MWCNT樣品的微觀形貌和元素分布情況, 以及FeS2/MWCNT微觀形貌圖. (a, b) 完整微球掃描電鏡圖; (c) FeS2/MWCNT樣品研磨破碎后微球掃描電鏡圖; (d) C-S-FeS2@MWCNT樣品研磨破碎后微球掃描電鏡圖; (e) 透射電鏡圖; (f) 截面掃描電鏡圖; (g~i) 能譜圖
Figure 2. Microstructure and element distribution of C-S-FeS2@MWCNT samples, as well as the microstructure diagram of FeS2/MWCNT: (a, b) SEM images; (c) SEM images of FeS2/MWCNT; (d) SEM images of the cracked particles by grinding; (e) TEM images; (f) SEM images of cross section; (g-i) EDS analysis of C-S-FeS2@MWCNT samples
圖 3 C-S-FeS2@MWCNT和FeS2/MWCNT的吸附曲線、孔徑分布情況以及熱重曲線. (a) C-S-FeS2@MWCNT氮吸附-解吸等溫線以及孔徑分布(插入圖); (b) FeS2/MWCNT氮吸附-解吸等溫線以及孔徑分布(插入圖); (c) 熱重曲線
Figure 3. Adsorption curves, pore size distribution and thermogravimetric curves of C-S-FeS2@MWCNT and FeS2/MWCNT: (a) nitrogen adsorption-desorption isotherm and pore size distribution (insert figure) of C-S-FeS2@MWCNT; (b) isotherm of nitrogen adsorption-desorption and pore size distribution of FeS2/MWCNT (insert figure); (c) thermogravimetric curve
圖 5 C-S-FeS2@MWCNT和FeS2/MWCNT的電化學性能. (a) C-S-FeS2@MWCNT電池的倍率性能; (b) C-S-FeS2@MWCNT和FeS2/MWCNT在1.0~3.0 V、500 m A·g-1電流密度下的循環性能對比; (c) C-S-FeS2@MWCNT在1.0~3.0 V、200 m·Ag-1電流密度下的長期循環性能
Figure 5. Electrochemical properties of C-S-FeS2@MWCNT and FeS2/MWCNT: (a) rate capacity of C-S-FeS2@MWCNT cells; (b) cycling performances of C-S-FeS2@MWCNT and FeS2/MWCNT at 500 m A·g-1between 1.0 V and 3.0 V; (c) long-term cycling performances of C-S-FeS2@MWCNT at 200 m A·g-1between 1.0 V and 3.0 V
259luxu-164 -
參考文獻
[1] Zhang SS, Tran D T. Mechanism and solution for the capacity fading of Li/FeS2 battery. J Electrochem Soc, 2016, 163(5): A792 doi: 10.1149/2.0041606jes [2] Tan R, Yang J L, Hu J T, et al. Core-shell nano-FeS2@ Ndoped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chem Commun, 2016, 52(5): 986 doi: 10.1039/C5CC08002A [3] Fong R, Dahn J R, Jones C H W. Electrochemistry of pyritebased cathodes for ambient temperature lithium batteries. J Electrochem Soc, 1989, 136(11): 3206 doi: 10.1149/1.2096426 [4] Hu Z, Zhang K, Zhu Z Q, et al. FeS2 microspheres with an etherbased electrolyte for high-performance rechargeable lithium batteries. J Mater Chem A, 2015, 3(24): 12898 doi: 10.1039/C5TA02169C [5] Hu Z, Zhu Z Q, ChengF Y, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ Sci, 2015, 8: 1309 doi: 10.1039/C4EE03759F [6] Tomczuk Z, Tani B, Otto N C, et al. Phase relationships in positive electrodes of high temperature Li-Al/LiCl-KCl/ FeS2 cells. J Electrochem Soc, 1982, 129(5): 925 doi: 10.1149/1.2124067 [7] Cabana J, Monconduit L, Larcher D, et al. Beyond intercalationbased Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22(35): E170 doi: 10.1002/adma.201000717 [8] ZhangFF, Huang G, Wang X X, et al. Sulfur-impregnated coreshell hierarchical porous carbon for lithium-sulfur batteries. ChemEur J, 2014, 20(52): 17523 http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM25346404.aspx [9] Liang X, Liu Y, Wen Z Y, et al. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries. J Power Sources, 2011, 196(16): 6951 doi: 10.1016/j.jpowsour.2010.11.132 [10] Wang L N, Wang Y G, Xia Y Y. A high performance lithiumion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ Sci, 2015, 8(5): 1551 doi: 10.1039/C5EE00058K [11] Zhang D, Mai Y J, Xiang J Y, et al. FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity. J Power Sources, 2012, 217: 229 doi: 10.1016/j.jpowsour.2012.05.112 [12] Chen T, Zhang Z W, Cheng B R, et al. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J Am Chem Soc, 2017, 139(36): 12710 doi: 10.1021/jacs.7b06973 [13] Ahn I S, Kim D W, Kang D K, et al. The effects of the particle size and active materials on the discharge properties of the Li/Fe(X)S2 electrode. Met Mater Int, 2008, 14(1): 65 doi: 10.3365/met.mat.2008.02.065 [14] Xu L, Hu Y J, Zhang H X, et al. Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustainable Chem Eng, 2016, 4 (8): 4251 doi: 10.1021/acssuschemeng.6b00741 [15] Li L, Cabán-Acevedo M, Girard SN, et al. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale, 2014, 6(4): 2112 doi: 10.1039/C3NR05851D [16] Mai L Q, Tian X C, Xu X, et al. Nanowire electrodes for elec-trochemical energy storage devices. Chem Rev, 2014, 114(23): 11828 doi: 10.1021/cr500177a [17] Zhang CF, Wang Z Y, Guo Z P, et al. Synthesis of MoS2-C one-dimensional nanostructures with improved lithium storage properties. ACS Appl Mater Interfaces, 2012, 4(7): 3765 doi: 10.1021/am301055z [18] Xu X, Cai T W, Meng Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J Power Sources, 2016, 331: 366 doi: 10.1016/j.jpowsour.2016.09.015 [19] JinF Y, Wang Y. Topotactical conversion of carbon coatedFebased electrodes on graphene aerogels for lithium ion storage. J Mater Chem A, 2015, 3(28): 14741 doi: 10.1039/C5TA03605D [20] Liu L, Yuan Z Z, Qiu C X, et al. A novel FeS2/CNT microspherical cathode material with enhanced electrochemical characteristics for lithium-ion batteries. Solid State Ionics, 2013, 241: 25 doi: 10.1016/j.ssi.2013.03.031 [21] Zhu Y J, Fan X L, Suo L M, et al. Electrospun FeS2@ carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano, 2015, 10(1): 1529 doi: 10.1021/acsnano.5b07081 [22] Lu J H, LianF, Guan L L, et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages. J Mater Chem A, 2019, 7(3): 991 doi: 10.1039/C8TA09955C [23] Kahlweit M. Ostwald ripening of precipitates. Adv Colloid Interface Sci, 1975, 5(1): 1 doi: 10.1016/0001-8686(75)85001-9 [24] Xu X, Meng Z, Zhu X L, et al. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery. J Power Sources, 2018, 380: 12 doi: 10.1016/j.jpowsour.2018.01.057 [25] Xu X J, Liu J, Liu Z B, et al. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano, 2017, 11(9): 9033 doi: 10.1021/acsnano.7b03530 [26] ZhangFF, Wang C L, Huang G, et al. FeS2@ C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries. J Power Sources, 2016, 328: 56 doi: 10.1016/j.jpowsour.2016.07.117 [27] Pan G X, CaoF, Xia X H, et al. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries. J Power Sources, 2016, 332: 383 doi: 10.1016/j.jpowsour.2016.09.126 [28] Xu X, Cai T W, Meng Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J Power Sources, 2016, 331: 366 doi: 10.1016/j.jpowsour.2016.09.015 [29] Zhang X C, Shyy W, Sastry A M. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc, 2007, 154(10): A910 doi: 10.1149/1.2759840 -