<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高溫合金617B管材熱擠壓特征及工藝優化控制

江河 董建新 張麥倉

江河, 董建新, 張麥倉. 高溫合金617B管材熱擠壓特征及工藝優化控制[J]. 工程科學學報, 2019, 41(4): 479-488. doi: 10.13374/j.issn2095-9389.2019.04.008
引用本文: 江河, 董建新, 張麥倉. 高溫合金617B管材熱擠壓特征及工藝優化控制[J]. 工程科學學報, 2019, 41(4): 479-488. doi: 10.13374/j.issn2095-9389.2019.04.008
JIANG He, DONG Jian-xin, ZHANG Mai-cang. Hot extrusion characteristics and technique optimization for superalloy 617B tube[J]. Chinese Journal of Engineering, 2019, 41(4): 479-488. doi: 10.13374/j.issn2095-9389.2019.04.008
Citation: JIANG He, DONG Jian-xin, ZHANG Mai-cang. Hot extrusion characteristics and technique optimization for superalloy 617B tube[J]. Chinese Journal of Engineering, 2019, 41(4): 479-488. doi: 10.13374/j.issn2095-9389.2019.04.008

高溫合金617B管材熱擠壓特征及工藝優化控制

doi: 10.13374/j.issn2095-9389.2019.04.008
基金項目: 

國家重點研發計劃重點專項資助項目 2017YFB0305201

中央高校基本業務費資助項目 FRF-TP-17-002A1

詳細信息
    通訊作者:

    江河, E-mail: jianghe17@sina.cn

  • 中圖分類號: TG146.1

Hot extrusion characteristics and technique optimization for superalloy 617B tube

More Information
  • 摘要: 基于高溫合金617B的組織演變模型,采用DEFORM-2D有限元軟件構建了617B合金管材的熱擠壓模擬計算過程,對高溫合金617B的熱擠壓特征進行了分析,并實現了管坯溫度、晶粒尺寸等的定量預測.在結合生產實際的基礎上,提出了包括溫度準則、載荷準則、組織精確控制準則等在內的組織可控的可擠出性準則,對準則的控制原理和實施過程進行了闡述,并采用該類準則對617B合金的熱擠壓工藝參數范圍進行優化,順利得到了軸向形狀尺寸均勻,表面質量較好的高溫合金617B管材.該方法的提出和驗證,為鎳基高溫合金無縫管材的生產提供了工藝優化的理論依據和研究方法.

     

  • 圖  1  高溫合金617B熱擠壓模擬的幾何模型

    Figure  1.  Geometric model for hot extrusion simulation of superalloy 617B

    圖  2  高溫合金617B熱擠壓結束時管坯及荒管溫度分布. (a) 壓余; (b) 變形區; (c) 荒管

    Figure  2.  Temperature distribution of superalloy 617B billet and tube after hot extrusion: (a) discard; (b) deformation zone; (c) tube

    圖  3  載荷隨擠壓時間變化及擠壓不同階段坯料應力變化

    Figure  3.  Evolution of loading with extrusion time and the stress distribution in billet at different periods of hot extrusion

    圖  4  不同擠壓速度下高溫合金617B管坯和荒管溫度分布. (a) 50 mm·s-1; (b) 100 mm·s-1; (c) 200 mm·s-1

    Figure  4.  Temperature distribution in billet and tube during hot extrusion of superalloy 617B with different extrusion speeds: (a) 50 mm·s-1; (b) 100mm·s-1; (c) 200 mm·s-1

    圖  5  高溫合金617B擠壓結束時管坯心部最低溫度與擠壓速度關系

    Figure  5.  Relationship between the temperature of billet center after hot extrusion and extrusion speed

    圖  6  高溫合金617B熱擠壓過程中峰值載荷隨擠壓速度變化

    Figure  6.  Variation of peak loading with extrusion speed of superalloy 617B during hot extrusion

    圖  7  擠壓速度對高溫合金617B荒管壁厚心部晶粒尺寸的影響

    Figure  7.  Effect of hot extrusion speed on the grain size of tube for su-peralloy 617B

    圖  8  管坯預熱溫度對高溫合金617B熱擠壓影響. (a) 最高溫度和最大溫升; (b) 峰值載荷; (c) 荒管壁厚心部晶粒尺寸

    Figure  8.  Effect of billet preheating temperature on the hot extrusion of superalloy 617B: (a) maximum temperature and maximum temperature rise; (b) peak loading; (c) grain size of tube

    圖  9  擠壓比對高溫合金617B熱擠壓影響. (a) 管坯最大溫升; (b) 擠壓力峰值; (c) 荒管壁厚心部晶粒尺寸

    Figure  9.  Effect of extrusion ratio on the hot extrusion of superalloy 617B: (a) maximum temperature and maximum temperature rise; (b) peak load-ing; (c) grain size of tube

    圖  10  高溫合金617B高溫拉伸行為特征

    Figure  10.  High-temperature tensile characteristics of superalloy 617B

    圖  11  高溫合金617B熱擠壓準則控制方法示意圖

    Figure  11.  Schematic for the application of hot extrusion process control principle of superalloy 617B

    圖  12  滿足組織可控擠出性準則的高溫合金617B擠壓比范圍

    Figure  12.  Optimization of hot extrusion ratio of superalloy 617B by microstructure-based hot extrusion process control principle

    圖  13  高溫合金617B滿足組織可控擠出性準則的參數范圍. (a) 擠壓速度范圍; (b) 管坯預熱溫度范圍

    Figure  13.  Parameter optimization of superalloy 617B guided by microstructure-based hot extrusion process control principle: (a) extrusion speed; (b) preheating temperature of billet

    圖  14  高溫合金617B荒管. (a) 熱擠壓后宏觀形貌; (b) 荒管壁厚心部組織形貌

    Figure  14.  Morphology of superalloy 617B tube: (a) macro morphology after hot extrusion; (b) microstructure of the tube

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Viswanathan R, Henry J F, Tanzosh J, et al. US program on materials technology for ultra-supercritical coal power plants. J Mater Eng Perform, 2005, 14(3) : 281 doi: 10.1361/10599490524039
    [2] Tytko D, Choi P P, Kl?wer J, et al. Microstructural evolution of a Ni-based superalloy (617B) at 700 ℃ studied by electron microscopy and atom probe tomography. Acta Mater, 2012, 60 (4) : 1731 doi: 10.1016/j.actamat.2011.11.020
    [3] Jiang H, Dong J X, Zhang M C. Manufacture process design of Inconel 617B superheater tubes for ultra-supercritical power plants. Mater Res Innovations, 2014, 18(Suppl 4) : S4-369 http://forest.ckcest.cn/d/hxwx/AVkJ2x4449MUqoKBN-CZ.html
    [4] Wang B S.Research on the Correlation of Hot Extrusion Process with Lubrication and Microstructure Control for G3 Alloy [Dissertation].Beijing: University of Science and Technology Beijing, 2011

    王寶順. G3合金熱擠壓工藝與潤滑行為及組織控制的關系研究[學位論文]. 北京: 北京科技大學, 2011
    [5] Yang L. Deformation Characteristics for Alloy 690 with Microstructure and Processing Control [Dissertation].Beijing: University of Science and Technology Beijing, 2012

    楊亮. 690合金變形行為及組織與工藝控制研究[學位論文]. 北京: 北京科技大學, 2012
    [6] Yan S C.High-temperature High-speed Hot Deformation Behavior of Inconel625 Alloy and Optimization of High-Speed Extrusion Process for Tube of This Alloy [Dissertation].Dalian: Dalian University of Techonology, 2010

    閆士彩. Inconel625合金高溫高速變形行為及其管材高速熱擠壓工藝優化[學位論文]. 大連: 大連理工大學, 2010
    [7] Wang J.Microstructure Controlled Extrudability Criterion of Nickelbase Alloy Tubes [Dissertation].Beijing: University of Scienceand and Technology Beijing, 2013

    王玨. 鎳基合金管材組織可控的擠出性準則及應用[學位論文]. 北京: 北京科技大學, 2013
    [8] Jiang H, Dong J X, Zhang M C, et al. Hot deformation characteristics of Alloy 617B nickel-based superalloy: a study using processing map. J Alloys Compd, 2015, 647: 338 doi: 10.1016/j.jallcom.2015.05.192
    [9] Inconel alloy 617 [J/OL].Special Metals Corporation (2005-03-05) [2019-03-27].http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-617.pdf
    [10] Jiang H, Dong J X, Zhang M C, et al. Phenomenological model for the effect of strain rate on recrystallization and grain growth kinetics in the 617B alloy. J Alloys Compd, 2018, 735: 1520 doi: 10.1016/j.jallcom.2017.11.299
    [11] Jiang H, Dong J X, Zhang M C, et al. A study on the effect of strain rate on the dynamic recrystallization mechanism of alloy 617B. Metall Mater Trans A, 2016, 47(10) : 5071 doi: 10.1007/s11661-016-3664-7
    [12] Wang J, Dong J X, Zhang M C, et al. Numerical simulation for optimization of the extrusion process of GH4169 tubes. J Univ Sci Technol Beijing, 2010, 32(1) : 83 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201001015.htm

    王玨, 董建新, 張麥倉, 等. GH4169合金管材正擠壓工藝優化的數值模擬. 北京科技大學學報, 2010, 32(1) : 83 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201001015.htm
    [13] Sun Y H.Investigation of Nickel Base G-3 Alloy Oil Pipe for Severe Sour Gas Field [Dissertation].Kunming: Kunming University of Science and Technology, 2008

    蘇玉華. 高酸性氣田用鎳基耐蝕合金G-3油管的研究[學位論文]. 昆明: 昆明理工大學, 2008
  • 加載中
圖(14)
計量
  • 文章訪問數:  1099
  • HTML全文瀏覽量:  456
  • PDF下載量:  19
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-04-11
  • 刊出日期:  2019-04-15

目錄

    /

    返回文章
    返回