<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

38MnB5熱成形鋼高溫變形行為及本構方程

林利 李寶順 朱國明 康永林 劉仁東

林利, 李寶順, 朱國明, 康永林, 劉仁東. 38MnB5熱成形鋼高溫變形行為及本構方程[J]. 工程科學學報, 2019, 41(4): 470-478. doi: 10.13374/j.issn2095-9389.2019.04.007
引用本文: 林利, 李寶順, 朱國明, 康永林, 劉仁東. 38MnB5熱成形鋼高溫變形行為及本構方程[J]. 工程科學學報, 2019, 41(4): 470-478. doi: 10.13374/j.issn2095-9389.2019.04.007
LIN Li, LI Bao-shun, ZHU Guo-ming, KANG Yong-lin, LIU Ren-dong. High-temperature deformation behavior and constitutive relationship of press-hardening steel 38MnB5[J]. Chinese Journal of Engineering, 2019, 41(4): 470-478. doi: 10.13374/j.issn2095-9389.2019.04.007
Citation: LIN Li, LI Bao-shun, ZHU Guo-ming, KANG Yong-lin, LIU Ren-dong. High-temperature deformation behavior and constitutive relationship of press-hardening steel 38MnB5[J]. Chinese Journal of Engineering, 2019, 41(4): 470-478. doi: 10.13374/j.issn2095-9389.2019.04.007

38MnB5熱成形鋼高溫變形行為及本構方程

doi: 10.13374/j.issn2095-9389.2019.04.007
基金項目: 

國家自然科學基金資助項目 U1460101

詳細信息
    通訊作者:

    朱國明, E-mail: zhuguoming@ustb.edu.cn

  • 中圖分類號: TG142.1

High-temperature deformation behavior and constitutive relationship of press-hardening steel 38MnB5

More Information
  • 摘要: 利用Gleeble-3500熱模擬試驗機對38MnB5熱成形鋼的高溫變形行為進行研究, 分別在650~950℃溫度區間內, 以0.01、0.1、1和10 s-1的應變速率對其進行等溫單向拉伸測試, 并得到相應條件下的真應力-應變曲線.結果表明: 38MnB5熱成形鋼流變應力隨著變形溫度的升高而減小, 隨著應變速率的增大而增大.當應變速率逐漸增加時, 熱變形時發生的動態回復和動態再結晶效果并不顯著, 而當溫度逐漸升高時, 二者作用逐漸加強.考慮了溫度、應變速率和應變的綜合復雜影響, 建立38MnB5熱成形鋼高溫下的本構方程.此本構方程通過對流變應力、應變、應變速率等實驗數據的回歸分析, 得到與變形溫度、應變速率和應變相關的材料參數多項式.計算結果與實驗結果對比發現, 通過本構方程所獲得的計算值與試驗值吻合良好.

     

  • 圖  1  熱沖壓試驗機模具

    Figure  1.  Mold for hot stamping

    圖  2  等溫單向拉伸測試的試樣形狀和尺寸(單位: mm)

    Figure  2.  Shape and dimension of the isothermal uniaxial tensile testing (unit: mm)

    圖  3  試驗方案

    Figure  3.  Testing procedure

    圖  4  試驗鋼熱沖壓前后應力-應變曲線

    Figure  4.  Stress-strain curves of investigated steel before and after hot-stamping

    圖  5  不同溫度下試樣的真應力-應變曲線. (a) 650℃; (b) 750℃; (c) 850℃; (d) 950℃

    Figure  5.  True stress-strain curves of specimens at different temperatures: (a) 650℃; (b) 750℃; (c) 850℃; (d) 950℃

    圖  6  變形溫度為850℃時不同應變速率下的微觀組織. (a) 0.01 s-1; (b) 0.1 s-1; (c) 1 s-1; (d) 10 s-1

    Figure  6.  Microstructures at different strain rates with deformation temperature of 850℃: (a) 0.01 s-1; (b) 0.1 s-1; (c) 1 s-1; (d) 10 s-1

    圖  7  應變速率為1 s-1時不同變形溫度下的微觀組織. (a) 650℃; (b) 750℃; (c) 850℃; (d) 950℃

    Figure  7.  Microstructures at different deformation temperatures with strain rate of 1 s-1: (a) 650℃; (b) 750℃; (c) 850℃; (d) 950℃

    圖  8  lnσ與${\rm{ln}}\dot \varepsilon $的關系曲線

    Figure  8.  lnσ versus ${\rm{ln}}\dot \varepsilon $curves

    圖  9  σ與${\rm{ln}}\dot \varepsilon $的關系曲線

    Figure  9.  σ versus ${\rm{ln}}\dot \varepsilon $curves

    圖  10  ln[sinh(ασ)]與${\rm{ln}}\dot \varepsilon $的關系曲線

    Figure  10.  ln[sinh(ασ)] versus ${\rm{ln}}\dot \varepsilon $ curves

    圖  11  ln[sinh(ασ)]與1/T的關系曲線

    Figure  11.  ln[sinh(ασ)]versus 1/T curves

    圖  12  系數與應變之間的關系. (a) n1; (b) β; (c) n; (d) Q; (e) lnA

    Figure  12.  Relationships between coefficients and strain: (a) n1; (b) β; (c) n; (d) Q; (e) lnA

    圖  13  不同溫度時真應力-應變曲線的計算值和試驗值. (a) 650℃; (b) 750℃; (c) 850℃; (d) 950℃

    Figure  13.  True stress-strain curves of computational results and experimental results at different temperatures: (a) 650℃; (b) 750℃; (c) 850℃; (d) 950℃

    表  1  試驗鋼化學成分(質量分數)

    Table  1.   Chemical composition of the investigated steel?%

    鋼種 C Si Mn Cr Mo B P CE
    38MnB5 0.36 0.25 1.21 0.27 0.16 0.005 0.008 0.68
    下載: 導出CSV

    表  2  試驗鋼室溫拉伸性能

    Table  2.   Tensile properties of investigated steel at room temperature

    鋼種 試樣狀態 屈服強度/MPa 抗拉強度/MPa 伸長率/%
    38MnB5 熱軋態 612 857 10.5
    熱沖壓 1316 2011 6.0
    下載: 導出CSV

    表  3  不同應變所對應的材料系數n1βnQ和lnA

    Table  3.   Coefficients n1, β, n, Q, and lnA at different strain

    ε n1 β n Q lnA
    0.02 13.2912 0.0823 9.9357 370003.88 39.6479
    0.05 12.4653 0.0664 9.2853 360369.29 38.1224
    0. 08 12. 0457 0. 0598 8. 9495 360970. 10 38. 0160
    0.10 11.9214 0.0578 8.8580 361694.89 38.0206
    0.12 11.9951 0.0567 8.9115 357087.89 37.5571
    0.14 12.1007 0.0566 8.9964 253567.64 37.1852
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Ma N, Hu P, Yan K K, et al. Research on boron steel for hot forming and its application. J Mech Eng, 2010, 46(14): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201014013.htm

    馬寧, 胡平, 閆康康, 等. 高強度硼鋼熱成形技術研究及其應用. 機械工程學報, 2010, 46(14): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201014013.htm
    [2] Merklein M, Lechler J. Investigation of the thermo-mechanical properties of hot stamping steels. J Mater Process Technol, 2006, 177(1-3): 452 doi: 10.1016/j.jmatprotec.2006.03.233
    [3] Naderi M, Durrenberger L, Molinari A, et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures. Mater Sci Eng A, 2008, 478(1-2): 130 doi: 10.1016/j.msea.2007.05.094
    [4] Ma N, Hu P, Wu W H, et al. Constitutive theory and experiment analysis of hot forming for high strength steel. Chin J Theor Appl Mech, 2011, 43(2): 346 https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201102013.htm

    馬寧, 胡平, 武文華, 等. 高強度鋼板熱成形本構理論與實驗分析. 力學學報, 2011, 43(2): 346 https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201102013.htm
    [5] Murty S V S N, Sarkar A, Narayanan P R, et al. Development of processing maps and constitutive relationship for thermomechanical processing of aluminum alloy AA2219. J Mater Eng Perform, 2017, 26(5): 2190 doi: 10.1007/s11665-017-2669-8
    [6] Chu Y D, Li J S, Zhao F T, et al. Flow behavior and constitutive relationship for elevated temperature compressive deformation of a high Nb containing TiAl alloy with (α2+γ) microstructure. Mater Lett, 2018, 210: 58 doi: 10.1016/j.matlet.2017.08.131
    [7] Shi B D, Peng Y, Yang C, et al. Loading path dependent distortional hardening of Mg alloys: experimental investigation and constitutive modeling. Int J Plast, 2017, 90: 76 doi: 10.1016/j.ijplas.2016.12.006
    [8] Li H P, He L F, Zhao G Q, et al. Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson-Cook model. Mater Sci Eng A, 2013, 580: 330 doi: 10.1016/j.msea.2013.05.023
    [9] Taylor T, Fourlaris G, Evans P, et al. New generation ultrahigh strength boron steel for automotive hot stamping technologies. Mater Sci Technol, 2014, 30(7): 818 doi: 10.1179/1743284713Y.0000000409
    [10] Taylor T, Danks S, Fourlaris G. Dynamic tensile testing of ultrahigh strength hot stamped martensitic steels. Steel Res Int, 2017, 88(3): 1600144 doi: 10.1002/srin.201600144
    [11] Gladman T. Grain refinement in multiple microalloyed steels. HSLA Steels. Warrendale, 1992: 3
    [12] Zhang S Q, Feng D, Zhang Y, et al. Hot deformation behavior and constitutive model of advanced ultra-high strength hot stamping steel. J Mater Eng, 2016, 44(5): 15 doi: 10.3969/j.issn.1673-1433.2016.05.004

    張施琦, 馮定, 張躍, 等. 新型超高強度熱沖壓用鋼的熱變形行為及本構關系. 材料工程, 2016, 44(5): 15 doi: 10.3969/j.issn.1673-1433.2016.05.004
    [13] Qi M J, Zhang X B, Song K X, et al. Deformation behavior and constitutive equation of 35MnB steel at high temperature. J Plast Eng, 2017, 24(2): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201702028.htm

    齊敏杰, 張學賓, 宋克興, 等. 35MnB鋼高溫變形行為及本構方程. 塑性工程學報, 2017, 24(2): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201702028.htm
    [14] Li G C, Deng T, Lu R Z. Experimental research on hot deformation behavior of ultra strength steel and simulation analysis of the constitutive relationship. Forg Stamp Technol, 2016, 41(3): 110 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201603026.htm

    李國城, 鄧濤, 盧任之. 超高強度鋼板熱流變行為試驗研究及本構模型仿真分析. 鍛壓技術, 2016, 41(3): 110 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201603026.htm
    [15] Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for constitutive model constants. J Appl Phys, 1988, 64(8): 3901 doi: 10.1063/1.341344
    [16] Zhao Y H, Sun J, Li J F, et al. A comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy. J Alloys Compd, 2017, 723: 179 doi: 10.1016/j.jallcom.2017.06.251
    [17] Lin Y C, Chen X M. A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel. Comput Mater Sci, 2010, 49(3): 628 doi: 10.1016/j.commatsci.2010.06.004
    [18] Li Z Z, Wang B F, Zhao S T, et al. Dynamic deformation and failure of ultrafine-grained titanium. Acta Mater, 2017, 125: 210 doi: 10.1016/j.actamat.2016.11.041
    [19] He S, Li C S, Huang Z Y, et al. A modified constitutive model based on Arrhenius-type equation to predict the flow behavior of Fe-36% Ni Invar alloy. J Mater Res, 2017, 32(20): 3831 doi: 10.1557/jmr.2017.259
    [20] Cai J, Wang K S, Han Y Y. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-Type constitutive models to predict high-temperature flow behavior of Ti-6Al-4V alloy in α+β phase. High Temp Mater Processes, 2016, 35(3): 297 doi: 10.1515/htmp-2014-0157
    [21] Wang Q L, Tang B T, Zheng W. A modified Norton-Hoff constitutive model and experimental verification. China Mech Eng, 2015, 26(14): 1978 doi: 10.3969/j.issn.1004-132X.2015.14.023

    王巧玲, 唐炳濤, 鄭偉. 一種修正的Norton-Hoff本構模型及實驗驗證. 中國機械工程, 2015, 26(14): 1978 doi: 10.3969/j.issn.1004-132X.2015.14.023
  • 加載中
圖(13) / 表(3)
計量
  • 文章訪問數:  1236
  • HTML全文瀏覽量:  537
  • PDF下載量:  41
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-04-13
  • 刊出日期:  2019-04-15

目錄

    /

    返回文章
    返回