A microsegregation model in the two-phase region of an ND steel continuous casting billet
-
摘要: 通過構建ND鋼連鑄坯凝固兩相區內溶質的微觀偏析模型, 不僅研究了C、S和P元素對固液兩相區內鋼的高溫力學參數以及溶質再分配的影響, 還對P元素偏析比隨冷卻速率(CR) 的變化規律進行了探究.通過分析模型結果表明: 初始C的質量分數在0.075%~0.125%之間時, 隨著初始C含量的增加, P、S元素的偏析加劇, 凝固末端溫度下降幅度變大, 導致脆性溫度區間增大; 增加P和S元素的初始含量, P、S元素的偏析比降低, 但會加劇其在枝晶間殘余液相中的富集, 直接導致零塑性溫度(ZDT) 下降; ND鋼中的Cu含量低于顯著提高裂紋敏感性的臨界含量, 且凝固過程中Cu元素的偏析比較低, 因此在ND鋼凝固過程中Cu元素不能主導裂紋的誘發; 在一定的冷卻速率波動范圍內, P元素的偏析比隨著冷卻速率(CR)的提高略有下降.Abstract: ND steel is a low alloy steel that resists the dew point corrosion of sulfuric acid.To improve the special performance of ND steel, the chemical composition of ND steel not only contains conventional elements but also adds corrosion-resistant elements, such as Cu, Cr, and Ni.During the solidification process, the molten steel will undergo a phase change reaction.Owing to the differences in the distribution coefficients and diffusion coefficients of solute elements in different phases, solute elements will be redistributed in the solid-liquid two-phase region during solidification, which will lead to microsegregation of solute elements.The microsegregation of solute element makes the zero strength temperature and zero plasticity temperature (ZDT) of steel decrease, which makes the temperature range of brittleness expand and deteriorates the mechanical property of high temperature of the continuous casting billet, and finally increases the probability of inducing surface cracks.This paper takes the microsegregation of solute elements as the research background.Herein, a microsegregation model for the solute in the solidified two-phase region of an ND steel continuous casting billet was established.In the model, the effects of elements C, S, and P on high-temperature mechanical parameters and solute redistribution of steel in its solid-liquid two-phase region were studied, and the variation law of the segregation ratio of elemental P with cooling rate (CR) was also explored.According to the analysis of the model results, when the initial C content was between 0.075%and 0.125%, with an increase in the initial C content, segregation of P and S elements intensified, and the temperature drop at the solidification end became larger, leading to the increase in the brittle temperature range.According to the analysis of the model results, increasing the initial content of P and S will decrease the segregation ratio of P and S elements but will increase the enrichment content of P and S elements in the residual liquid phase between dendrites, directly leading to the decline of ZDT.Analysis of the model results shows that the Cu content in ND steel is lower than the critical content that significantly increases the crack sensitivity, and the segregation ratio of Cu element is at a low level during solidification.Therefore, elemental Cu cannot dominate the induced crack in ND steel during solidification.Finally, within a certain range of cooling rate fluctuation, the segregation ratio of P will decrease slightly with increasing CR.
-
表 1 1873K時各元素活度相互作用系數
Table 1. Activity interaction coefficient of each element at 1873K
eij C Si Mn P S Cu Ni Cr Mn -0.07 - - -0.0035 -0.048 - - - S 0.11 0.063 -0.026 0.029 -0.028 -0.0084 0 -0.011 表 2 溶質元素在各相中的凝固參數
Table 2. Solidification parameters of the solute elements in each phase
元素 kiδ/L kiγ/L Diδ/(cm2·s-1) Diγ/(cm2·s-1) mi C 0.19 0.34 5.08×10-5 8.26×10-6 78.0 Si 0.77 0.52 3.70×10-7 1.17×10-8 7.6 Mn 0.76 0.78 1.86×10-7 2.47×10-9 4.9 P 0.23 0.13 4.81×10-7 4.10×10-8 34.4 S 0.05 0.035 2.16×10-6 6.27×10-7 38.0 Cu 0.53 0.88 2.21×10-7 2.63×10-9 5.32 Ni 0.83 0.95 1.36×10-7 1.63×10-10 4.69 Cr 0.95 0.86 2.239×10-7 4.236×10-10 1.04 表 3 實驗鋼種化學成分(質量分數)
Table 3. Chemical composition of experimental steel?
% C Si Mn P S 0.13 0.35 1.52 0.016 0.002 表 4 ND鋼化學成分(質量分數)
Table 4. ND steel element composition?
% C Si Mn P S Cu Ni Cr 0.07~0.125 0.20~0.40 0.40~0.60 <0.025 <0.010 0.25~0.45 0.10~0.20 0.75~1.00 259luxu-164 -
參考文獻
[1] Cai Z Z, Zhu M Y. Microsegregation of solute elements in solidifying mushy zone of steel and its effect on longitudinal surface cracks of continuous casting strand. Acta Metall Sin, 2009, 45 (8) : 949 doi: 10.3321/j.issn:0412-1961.2009.08.009蔡兆鎮, 朱苗勇. 鋼凝固兩相區溶質元素的微觀偏析及其對連鑄坯表面縱裂紋的影響. 金屬學報, 2009, 45(8) : 949 doi: 10.3321/j.issn:0412-1961.2009.08.009 [2] Song J X, Cai Z Z, Zhu M Y. Analysis of solidified shell cracking susceptibility in in slab continuous casting mold. Foundry Technol, 2016, 37(11) : 2376 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201611021.htm宋景欣, 蔡兆鎮, 朱苗勇. 連鑄板坯結晶器內凝固坯殼裂紋敏感性研究. 鑄造技術, 2016, 37(11) : 2376 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201611021.htm [3] Bower T F, Brody H D, Flemings M C, et al. Measurements of solute redistribution in dendritic solidification. Trans Metall Soc AIME, 1966, 236(5) : 624 http://ci.nii.ac.jp/naid/10007126115 [4] Voller V R, Beckermann C. A unified model of microsegregation and coarsening. Metall Mater Trans A, 1999, 30(8) : 2183 doi: 10.1007/s11661-999-0030-z [5] Clyne T W, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting. Metall Trans B, 1982, 13(2) : 259 doi: 10.1007/BF02664583 [6] Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels. Metall Mater Trans A, 2001, 32(7) : 1755 doi: 10.1007/s11661-001-0152-4 [7] Zeng Y N.Precipitation Mechanism of Second Phase Particles and Control of Surface Cracks in Continuous Casting Slab of Microalloyed Steel [Dissertation].Beijing: University of Science and Technology Beijing, 2015曾亞南. 微合金鋼連鑄坯第二相粒子析出機理與表面裂紋控制研究[學位論文]. 北京: 北京科技大學, 2015 [8] Liu X.Precipitation Behavior of MnS Inclusion in the Steel [Dissertation].Shenyang: Northeastern University, 2012劉學. 鋼中MnS夾雜物析出行為研究[學位論文]. 沈陽: 東北大學, 2012 [9] Choudhary S K, Ghosh A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ Int, 2009, 49(12) : 1819 doi: 10.2355/isijinternational.49.1819 [10] Han Z Q, Cai K K. Study on a mathematical model of microsegregation in continuously cast slab. Acta Metall Sin, 2000, 36 (8) : 869 doi: 10.3321/j.issn:0412-1961.2000.08.020韓志強, 蔡開科. 連鑄坯中微觀偏析的模型研究. 金屬學報, 2000, 36(8) : 869 doi: 10.3321/j.issn:0412-1961.2000.08.020 [11] Cornelissen M C M. Mathematical model for solidification of multicomponent alloys. Ironmak Steelmak, 1986, 13(4) : 204 http://www.researchgate.net/publication/291769021_MATHEMATICAL_MODEL_FOR_SOLIDIFICATION_OF_MULTICOMPONENT_ALLOYS [12] Wang Y Z. New Continuous Cast Steel Technology and Equipment. Beijing: Metallurgical Industry Press, 1999王雅貞. 新編連續鑄鋼工藝及設備. 北京: 冶金工業出版社, 1999 [13] Matsumiya T, Kajioka H, Mizoguchi S, et al. Mathematical analysis of segregations in continuously-cast slabs. Trans Iron Steel Inst Jpn, 1984, 24(11) : 873 doi: 10.2355/isijinternational1966.24.873 [14] Xian A P, Zhang D, Wang Y K. Impurities in steel and their influence on steel properties. Iron Steel, 1999, 34(10) : 64 doi: 10.3321/j.issn:0449-749X.1999.10.018冼愛平, 張盾, 王儀康. 鋼中殘余元素及其對鋼性能的影響. 鋼鐵, 1999, 34(10) : 64 doi: 10.3321/j.issn:0449-749X.1999.10.018 -