<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鈣鈦礦電池用碘化鉛的合成與性能

杜晨 馬瑞新 王成彥 王碩 吳超榮

杜晨, 馬瑞新, 王成彥, 王碩, 吳超榮. 鈣鈦礦電池用碘化鉛的合成與性能[J]. 工程科學學報, 2019, 41(4): 454-460. doi: 10.13374/j.issn2095-9389.2019.04.005
引用本文: 杜晨, 馬瑞新, 王成彥, 王碩, 吳超榮. 鈣鈦礦電池用碘化鉛的合成與性能[J]. 工程科學學報, 2019, 41(4): 454-460. doi: 10.13374/j.issn2095-9389.2019.04.005
DU Chen, MA Rui-xin, WANG Cheng-yan, WANG Shuo, WU Chao-rong. Synthesis and properties of lead iodide for perovskite solar cells[J]. Chinese Journal of Engineering, 2019, 41(4): 454-460. doi: 10.13374/j.issn2095-9389.2019.04.005
Citation: DU Chen, MA Rui-xin, WANG Cheng-yan, WANG Shuo, WU Chao-rong. Synthesis and properties of lead iodide for perovskite solar cells[J]. Chinese Journal of Engineering, 2019, 41(4): 454-460. doi: 10.13374/j.issn2095-9389.2019.04.005

鈣鈦礦電池用碘化鉛的合成與性能

doi: 10.13374/j.issn2095-9389.2019.04.005
基金項目: 

中央大學基礎研究基金資助項目 (FRF-BD-15-004A)

國家自然科學基金資助項目 (11220275)

詳細信息
    通訊作者:

    馬瑞新, E-mail: maruixin@ustb.edu.cn

  • 中圖分類號: TN304.0

Synthesis and properties of lead iodide for perovskite solar cells

More Information
  • 摘要: 碘化鉛是有機無機雜化鈣鈦礦太陽能電池的關鍵原料, 其使用方法為溶解在二甲基甲酰胺(DMF)中然后制成膜.碘化鉛在DMF中的溶解性對電池器件的性能有重要影響.本文經實驗判斷, 造成碘化鉛在DMF中溶解性差的原因是H2O、PbO、PbO2等氧化物在碘化鉛晶體表面形成氧化物薄膜, 阻礙其溶解.在一定范圍內, 碘化鉛在DMF中溶解性取決于碘化鉛合成過程中反應溶液的pH值.經過掃描電鏡、X射線衍射、X射線光電子能譜等分析檢測, 確定有機無機雜化鈣鈦礦太陽能電池用碘化鉛最佳合成pH值為2;且在一定范圍內反應溶液pH值、滴速和溶液濃度不會影響碘化鉛的微觀形貌及其在DMF中的溶解性; 同時發現重結晶、熱反應以及慢滴速反應條件會使碘化鉛樣品在(001)面擇優生長.

     

  • 圖  1  試樣1~14的X射線衍射圖譜

    Figure  1.  XRD patterns of Samples 1-14

    圖  2  試樣1~14(001)晶面衍射峰強度對比圖

    Figure  2.  (001)crystal plane diffraction peak intensity comparison of Samples 1-14

    圖  3  試樣1~14的拉曼光譜圖

    Figure  3.  Raman spectra of Samples 1-14

    圖  4  試樣1~14在DMF中溶解度圖

    Figure  4.  Solubility in DMF of Samples 1-14

    圖  5  試樣1~4和試樣14的X射線光電子能譜中O 1s分峰擬合圖譜

    Figure  5.  XPS O1s sub-peak fitting maps of Samples 1-4 and 14

    圖  6  試樣1~4和試樣14的X射線光電子能譜中Pb 4f圖譜

    Figure  6.  Pb 4f map in XPS of Samples 1-4 and 14

    圖  7  試樣1~14的掃描電鏡圖

    Figure  7.  FESEM images of Samples 1-14

    圖  8  試樣1~14制備的鈣鈦礦太陽能電池平均轉換效率

    Figure  8.  Average efficiency of perovskite solar cells prepared with Samples 1-14

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Mei H L, Tang L D, Wang B, et al. Recent progress of perovskite solar cells. J Liaoning Univ Technol Nat Sci Ed, 2016, 36(1): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-LNGX201601013.htm

    梅海林, 唐立丹, 王冰, 等. 鈣鈦礦型太陽能電池的研究進展. 遼寧工業大學學報(自然科學版), 2016, 36(1): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-LNGX201601013.htm
    [2] Green M A. Third generation photovoltaics: advanced solar energy conversion. Phys Today, 2004, 57(12): 71 doi: 10.1063/1.1878345
    [3] Rakitin V V, Novikov G F. Third-generation solar cells based on quaternary copper compounds with the kesterite-type structure. Russ ChemRev, 2017, 86(2): 99
    [4] Jung H S, Park N G. Perovskite solar cells: frommaterials to devices. Small, 2014, 11(1): 10 http://www.ncbi.nlm.nih.gov/pubmed/25358818
    [5] Park N G. Perovskite solar cells: an emerging photovoltaic technology. Mater Today, 2015, 18(2): 65 doi: 10.1016/j.mattod.2014.07.007
    [6] Song Z N, Watthage S C, Phillips A B, et al. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J Photon Energy, 2016, 6(2): 022001 doi: 10.1117/1.JPE.6.022001
    [7] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nature Photon, 2014, 8(7): 506 doi: 10.1038/nphoton.2014.134
    [8] Snaith H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys ChemLett, 2013, 4(21): 3623
    [9] Green M A, Ho-Baillie A. Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett, 2017, 2(4): 822 doi: 10.1021/acsenergylett.7b00137
    [10] Zhu X H.Studies on Polycrystalline Synthesis and Single Crystal Growth of LeadIodide[Dissertation].Chengdu: Sichuan University, 2006

    朱興華. 碘化鉛多晶合成與單晶生長研究[學位論文]. 成都: 四川大學, 2006
    [11] O'Regan B C, Barnes P R F, Li X E, et al. Optoelectronic studies of methylammoniumlead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J-V hysteresis. J AmChemSoc, 2015, 137(15): 5087 doi: 10.1021/jacs.5b00761
    [12] Deng H, Dong D D, Qiao K K, et al. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 2015, 7(9): 4163 doi: 10.1039/C4NR06982J
    [13] Hao F, Stoumpos C C, Cao D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photon, 2014, 8: 489 doi: 10.1038/nphoton.2014.82
    [14] Hendon C H, Yang R X, Burton L A, et al. Assessment of polyanion(BF4 and PF6)substitutions in hybrid halide perovskites. J Mater ChemA, 2014, 3(17): 9067 http://pubs.rsc.org/en/content/articlehtml/2015/ta/c4ta05284f
    [15] KimH S, Lee C R, ImJ H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin filmmesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2(8): 591 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423636/
    [16] David D C, James R B, Feemster H, et al. Investigation of lead iodide crystals for use as high energy solid state radiation detectors. MRS Online Proc Library Archive, 1993, 302: 335 doi: 10.1557/PROC-302-335
    [17] Liu J, Zhang Y. Effect of temperature gradient on the growth of PbI2crystal for nuclear radiation detectors. Bull Chin CeramSoc, 2016, 35(11): 3893 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201611069.htm

    劉靜, 張羽. 溫度梯度對核輻射探測器用PbI2晶體生長影響研究. 硅酸鹽通報, 2016, 35(11): 3893 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201611069.htm
    [18] Li X H, Zhu X H, Sun H, et al. Radiation detector based on lead iodide(PbI2). Electron Sci Technol, 2017, 30(5): 69 doi: 10.3969/j.issn.1001-2400.2017.05.012

    李小輝, 朱興華, 孫輝, 等. 基于碘化鉛X射線室溫輻射探測器的研究. 電子科技, 2017, 30(5): 69 doi: 10.3969/j.issn.1001-2400.2017.05.012
    [19] Zhao X. Research development of PbI2single crystal growth and room-temperature nuclear radiation detectors. Mater Rev, 2011, 25(1): 80 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201101018.htm

    趙欣. 碘化鉛單晶生長及探測器的研究進展. 材料導報, 2011, 25(1): 80 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201101018.htm
    [20] Yang D Y, Zhu X H, Sun H, et al. Structural, morphological and optical properties of PbI2 thick film. Spectrosc Spectr Anal, 2014, 34(11): 2892 doi: 10.3964/j.issn.1000-0593(2014)11-2892-05

    楊定宇, 朱興華, 孫輝, 等. PbI2 厚膜的結構、形貌與光譜性質研究. 光譜學與光譜分析, 2014, 34(11): 2892 doi: 10.3964/j.issn.1000-0593(2014)11-2892-05
    [21] Jin Y R, Li L X, He Y, et al. Growth of PbI2 single crystal with ascending U type ampoule. J Xihua Univ Nat Sci, 2007, 26(1): 31 https://www.cnki.com.cn/Article/CJFDTOTAL-SCGX200701009.htm

    金應榮, 李麗霞, 賀毅, 等. U型坩堝上升法生長碘化鉛單晶體. 西華大學學報(自然科學版), 2007, 26(1): 31 https://www.cnki.com.cn/Article/CJFDTOTAL-SCGX200701009.htm
    [22] Sun H, Zhu X H, Yang D Y, et al. Electrical and γ-ray energy spectrumresponse properties of PbI2 crystal grown by physical vapor transport. J Semicond, 2012, 33(5): 053002-1 doi: 10.1088/1674-4926/33/5/053002
    [23] Hommerich U, Brown E, Trivedi S B, et al. Synthesis and 1.5 μmemission properties of Nd3+ activated lead bromide and lead iodide crystals[J]. Appl Phys Lett, 2006, 88(25): 1906 doi: 10.1063/1.2216420
    [24] Wang B.A Method for Growing Single Crystals of LeadIodide: China Paten, CN106012013A. 2016-10-12

    王冰. 一種生長碘化鉛單晶體的方法: 中國專利, CN106012013A. 2016-10-12
    [25] Wangyang P H, Sun H, Zhu X H, et al. Mechanical exfoliation and Raman spectra of ultrathin PbI2 single crystal. Mater Lett, 2016, 168: 68 doi: 10.1016/j.matlet.2016.01.034
    [26] Chen Y H, Li L, Liu Z H, et al. Photon management for efficient hybrid perovskite solar cells via synergetic localized grating and enhanced fluorescence effect. Nano Energy, 2017, 40: 540 doi: 10.1016/j.nanoen.2017.08.059
  • 加載中
圖(8)
計量
  • 文章訪問數:  1589
  • HTML全文瀏覽量:  593
  • PDF下載量:  141
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-04-10
  • 刊出日期:  2019-04-15

目錄

    /

    返回文章
    返回