<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于最小應變能密度因子斷裂準則的巖石裂紋水力壓裂研究

董卓 唐世斌 郎穎嫻

董卓, 唐世斌, 郎穎嫻. 基于最小應變能密度因子斷裂準則的巖石裂紋水力壓裂研究[J]. 工程科學學報, 2019, 41(4): 436-446. doi: 10.13374/j.issn2095-9389.2019.04.003
引用本文: 董卓, 唐世斌, 郎穎嫻. 基于最小應變能密度因子斷裂準則的巖石裂紋水力壓裂研究[J]. 工程科學學報, 2019, 41(4): 436-446. doi: 10.13374/j.issn2095-9389.2019.04.003
DONG Zhuo, TANG Shi-bin, LANG Ying-xian. Hydraulic fracture prediction theory based on the minimumstrain energy density criterion[J]. Chinese Journal of Engineering, 2019, 41(4): 436-446. doi: 10.13374/j.issn2095-9389.2019.04.003
Citation: DONG Zhuo, TANG Shi-bin, LANG Ying-xian. Hydraulic fracture prediction theory based on the minimumstrain energy density criterion[J]. Chinese Journal of Engineering, 2019, 41(4): 436-446. doi: 10.13374/j.issn2095-9389.2019.04.003

基于最小應變能密度因子斷裂準則的巖石裂紋水力壓裂研究

doi: 10.13374/j.issn2095-9389.2019.04.003
基金項目: 

國家自然科學基金面上項目 51874065

國家自然科學基金資助項目 U1562103

國家自然科學基金資助項目 51474046

詳細信息
    通訊作者:

    唐世斌, E-mail: tang_shibin@dlut.edu.cn

  • 中圖分類號: TG142.71

Hydraulic fracture prediction theory based on the minimumstrain energy density criterion

More Information
  • 摘要: 建立了考慮裂紋尖端非奇異項T應力的最小應變能密度因子斷裂準則, 研究了不同裂紋類型條件下T應力和泊松比對起裂角的影響, 結果表明裂紋起裂角不僅與奇異項應力強度因子有關, 而且還需要考慮非奇異項T應力和泊松比的影響作用.同時計算了含井筒對稱雙裂紋水力壓裂模型的起裂角和臨界水壓, 表明依據本文斷裂準則計算得到理論解與實驗結果吻合良好.在此基礎上, 利用該準則從理論上分析了臨界裂紋區尺寸、T應力、比奧系數、側壓系數、泊松比等因素對水力壓裂裂紋起裂特性的影響.參數分析表明: 臨界裂紋區尺寸、T應力和側壓系數對臨界水壓和臨界起裂角有顯著影響.臨界水壓隨著泊松比增大而減小, 而臨界起裂角呈現相反變化趨勢.比奧系數對臨界起裂角沒有影響, 但是在高水壓條件下對起裂角具有顯著影響.

     

  • 圖  1  純I型裂紋起裂角與泊松比υT應力的關系

    Figure  1.  Relationship between Poisson's ratio, T-stress, and fracture initiation angle under pure Mode I

    圖  2  純II型裂紋起裂角θ0與泊松比υT應力的關系

    Figure  2.  Relationship between Poisson's ratio, T-stress, and fracture initiation angle under pure Mode II

    圖  3  計算模型. (a) 實驗模型[16]; (b) 雙軸壓縮中心裂紋模型

    Figure  3.  Calculating model: (a) experimental model[16]; (b) center preexisting crack under biaxial compression

    圖  4  數值模型及裂紋尖端網格

    Figure  4.  Numerical model and crack tip mesh pattern

    圖  5  起裂角θ0實驗數據與理論計算(有無T應力) 的對比. (a) σH /σh = 4; (b) σH /σh = 6

    Figure  5.  Experimental and theoretical results (with or without T-stress) of the fracture initiation angle: (a) σH /σh = 4; (b) σH /σh = 6

    圖  6  臨界水壓Pc和臨界起裂角θ0實驗數據與理論計算對比. (a) σH /σh = 4; (b) σH /σh = 6; (c) σH /σh = 4; (d) σH /σh = 6

    Figure  6.  Experimental and theoretical results of the critical water pressure and fracture initiation angle: (a) σH /σh = 4; (b) σH /σh = 6; (c) σH /σh = 4; (d) σH /σh = 6

    圖  7  T應力的影響.(a) 臨界水壓Pc; (b)臨界起裂角θ0

    Figure  7.  Effect of T-stress: (a) critical water pressure Pc; (b) critical initiation angle θ0

    圖  8  比奧系數的影響. (a) 臨界水壓Pc; (b) 臨界起裂角θ0

    Figure  8.  Effect of Biot's coefficient: (a) critical water pressure Pc; (b) critical initiation angle θ0

    圖  9  側壓系數k的影響. (a) 臨界水壓Pc; (b) 臨界起裂角θ0

    Figure  9.  Effect of lateral pressure coefficient : (a) critical water pressure Pc; (b) critical initiation angle θ0

    圖  10  泊松比υ的影響. (a) 臨界水壓Pc; (b) 臨界起裂角θ0

    Figure  10.  Effect of Poisson's ratio: (a) critical water pressure Pc; (b) critical initiation angle θ0

    圖  11  不同泊松比υ條件下裂紋尖端最大主應力

    Figure  11.  Maximum principal stresses of the crack tip under different Poisson's ratios

    圖  12  高注水壓力對起裂角θ0的影響

    Figure  12.  Effect of high injected water pressure on the fracture initiation angle

    圖  13  不同因素對起裂角θ0的影響. (a) 側壓系數; (b) 比奧系數; (c) 泊松比

    Figure  13.  Effect of different factors on the fracture initiation angle: (a) lateral pressure coefficient; (b) Biot's coefficient; (c) Poisson's ratio

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Chen M, Jin Y, Zhang G Q. Petroleum Engineering Rock Mechanics. Beijing: Science Press, 2008

    陳勉, 金衍, 張廣清. 石油工程巖石力學. 北京: 科學出版社, 2008
    [2] Liu J Z, Liu X G, Zhang X, et al. The great scale rock experiment simulating hydraulic fracturing. Acta Geophys Sin, 1994, 37 (Suppl 1): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S2.016.htm

    劉建中, 劉翔鶚, 張雪, 等. 大尺度水壓致裂模擬實驗. 地球物理學報, 1994, 37(增刊1): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S2.016.htm
    [3] Jiang H, Chen M, Zhang G Q, et al. Impart of oriented perforation on hydraulic fracture initiation and propagation. Chin J Rock Mech Eng, 2009, 28(7): 1321 doi: 10.3321/j.issn:1000-6915.2009.07.004

    姜滸, 陳勉, 張廣清, 等. 定向射孔對水力裂縫起裂與延伸的影響. 巖石力學與工程學報, 2009, 28(7): 1321 doi: 10.3321/j.issn:1000-6915.2009.07.004
    [4] Wang D, Chen M, Jon Y, et al.Experimental study of fracture initiation and propagation from a wellbore//49th US Rock Mechanics/Geomechanics Symposium.San Francisco, 2015: ARMA- 2015-068
    [5] Li W, Li L C, Tang C A. Numerical simulation research on mechanism of induced stress perturbation between parallel fractures in horizontal wells. Nat Gas Geosci, 2016, 27(11): 2043 doi: 10.11764/j.issn.1672-1926.2016.11.2043

    李旺, 李連崇, 唐春安. 水平井平行裂縫間誘導應力干擾機制的數值模擬研究. 天然氣地球科學, 2016, 27(11): 2043 doi: 10.11764/j.issn.1672-1926.2016.11.2043
    [6] Liu C, Shi F, Lu D T, et al. Numerical simulation of simultaneous multiple fractures initiation in unconventional reservoirs through injection control of horizontal well. J Petrol Sci Eng, 2017, 159: 603 doi: 10.1016/j.petrol.2017.09.064
    [7] Shi F, Wang X L, Liu C, et al. An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures. Eng Fract Mech, 2017, 173: 64 doi: 10.1016/j.engfracmech.2017.01.025
    [8] Nadimi S, Miscovic I, McLennan J. A 3D peridynamic simulation of hydraulic fracture process in a heterogeneous medium. J Petrol Sci Eng, 2016, 145: 444 doi: 10.1016/j.petrol.2016.05.032
    [9] Lian Z L, Zhang J, Wang X X, et al. Simulation study of characteristics of hydraulic fracturing propagation. Rock Soil Mech, 2009, 30(1): 169 doi: 10.3969/j.issn.1000-7598.2009.01.029

    連志龍, 張勁, 王秀喜, 等. 水力壓裂擴展特性的數值模擬研究. 巖土力學, 2009, 30(1): 169 doi: 10.3969/j.issn.1000-7598.2009.01.029
    [10] Wang X L, Shi F, Liu H, et al. Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method. J Nat Gas Sci Eng, 2016, 33: 56 doi: 10.1016/j.jngse.2016.05.001
    [11] Hosseini S M.On the linear elastic fracture mechanics application in Barnett shale hydraulic fracturing//47th US Rock Me chanics /Geomechanics Symposium.San Francisco, 2013: AR- MA-2013-644
    [12] Pu C Z, Cao P, Zhang C Y, et al. Fracture failure mechanism of rock with closed crack and judging criterion of seepage pressure under biaxial compression. Rock Soil Mech, 2015, 36(1): 56 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501007.htm

    蒲成志, 曹平, 張春陽, 等. 雙向壓縮條件下閉合裂隙巖體斷裂破壞機制及滲透壓環境判定準則. 巖土力學, 2015, 36 (1): 56 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501007.htm
    [13] Li X B, He X Q, Chen H J. Crack initiation characteristics of opening-mode crack embedded in rock-like material under seepage pressure. Chin J Rock Mech Eng, 2012, 31(7): 1317 doi: 10.3969/j.issn.1000-6915.2012.07.002

    李夕兵, 賀顯群, 陳紅江. 滲透水壓作用下類巖石材料張開型裂紋啟裂特性研究. 巖石力學與工程學報, 2012, 31 (7): 1317 doi: 10.3969/j.issn.1000-6915.2012.07.002
    [14] Tang S B, Dong Z, Huang R Q. Determination of T-stress using finite element analysis. Sci China Technol Sci, 2017, 60 (8) : 1211 doi: 10.1007/s11431-016-0835-2
    [15] Li S Y, He T M, Yin X C. Introduction of Rock Fracture Mechanics. Hefei: University of Science and Technology of China Press, 2010

    李世愚, 和泰名, 尹祥礎. 巖石斷裂力學導論. 合肥: 中國科學技術大學出版社, 2010
    [16] Jin X C.An Integrated Geomechanics and Petrophysics Study of Hydraulic Fracturing in Naturally Fractured Reservoirs [Dissertation].Norman: University of Oklahoma, 2014
    [17] Tang S B. The effect of T-stress on the fracture of brittle rock under compression. Int J Rock Mech Min Sci, 2015, 79: 86 doi: 10.1016/j.ijrmms.2015.06.009
    [18] Seweryn A. A non-local stress and strain energy release rate mixed mode fracture initiation and propagation criteria. Eng Fract Mech, 1998, 59(6): 737 doi: 10.1016/S0013-7944(97)00175-6
    [19] Wei Y J. An extended strain energy density failure criterion by differentiating volumetric and distortional deformation. Int J Solids Struct, 2012, 49(9): 1117 doi: 10.1016/j.ijsolstr.2012.01.015
    [20] Ayatollahi M R, Moghaddam M R, Razavi S M J, et al. Geometry effects on fracture trajectory of PMMA samples under pure mode-I loading. Eng Fract Mech, 2016, 163: 449 doi: 10.1016/j.engfracmech.2016.05.014
    [21] Ayatollahi M R, Moghaddam M R, Berto F. A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials. Theor Appl Fract Mech, 2015, 79: 70 doi: 10.1016/j.tafmec.2015.09.004
    [22] Williams M L. On the stress distribution at the base of a stationary crack. J Appl Mech, 1957, 24: 109 doi: 10.1115/1.4011454
    [23] Khan S M A, Khraisheh M K. Analysis of mixed mode crack initiation angles under various loading conditions. Eng Fract Mech, 2000, 67(5): 397 doi: 10.1016/S0013-7944(00)00068-0
    [24] Smith D J, Ayatollahi M R, Pavier M J. On the consequences of T-stress in elastic brittle fracture. Proc R Soc London A, 2006, 462(2072): 2415 http://adsabs.harvard.edu/abs/2006RSPSA.462.2415S
    [25] Sih G C. Strain-energy-density factor applied to mixed mode crack problems. Int J Fract, 1974, 10(3): 305 doi: 10.1007/BF00035493
    [26] ANSYS Inc.ANSYS Mechanical Theory Reference:Release 15.0.Canonsburg,2014
    [27] Guo F, Morgenstern N R, Scott J D.Interpretation of hydraulic fracturing breakdown pressure//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.Pergamon, 1993: 617
    [28] Bruno M S, Nakagawa F M.Pore pressure influence on tensile fracture propagation in sedimentary rock//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.Pergamon, 1991: 261
    [29] Hossain M M, Rahman M K, Rahman S S. Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes. J Petrol Sci Eng, 2000, 27(3-4): 129 doi: 10.1016/S0920-4105(00)00056-5
    [30] Ikeda R, Tsukahara H.Hydraulic fracturing technique: pore pressure effect and stress heterogeneity//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.Pergamon, 1989: 471
    [31] Haimson B, Fairhurst C. Hydraulic fracturing in porous-permeable materials. J Petrol Technol, 1969, 21(7): SPE-2354-PA http://www.researchgate.net/publication/250086937_Hydraulic_Fracturing_in_Porous-Permeable_Materials
    [32] da Silva B G, Einstein H H. Finite element study of fracture initiation in flaws subject to internal fluid pressure and vertical stress. Int J Solids Struct, 2014, 51(23-24): 4122 doi: 10.1016/j.ijsolstr.2014.08.006
  • 加載中
圖(13)
計量
  • 文章訪問數:  1219
  • HTML全文瀏覽量:  666
  • PDF下載量:  29
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-03-08
  • 刊出日期:  2019-04-15

目錄

    /

    返回文章
    返回