-
摘要: 崩塌災害的早期預警一直是巖土工程領域研究的熱點問題之一.傳統的監測預警方法監測指標相對單一, 更多關注于加速破壞前兆的識別, 使得崩塌的早期預警存在諸多困難.本文首先引入動力學監測指標, 對巖土體破壞過程中的動力響應進行綜述, 得出基于固有振動頻率等動力學監測指標可以為危巖體的損傷提供數據支持.隨后基于最新的實驗研究發現動力學監測指標可以有效反應邊坡的物理力學特征的變化, 進而可以實現巖體損傷與穩定性的動態識別和定量判斷.在對國內外現狀進行綜述發現, 基于分離階段破壞前兆識別的巖塊體崩塌災害預警思路, 具有更好的時效性, 是未來崩塌早期預警的發展方向, 同時對崩塌的早期預警指標體系進行展望, 得出基于動力學指標、靜力學指標和環境量指標三位一體的早期監測預警指標體系, 必將在工程監測與災害預警方面發揮更大潛力, 為從事應對崩塌等脆性破壞災害預警預防的研究工作者提供有效參考.Abstract: Early warning of rock collapse is one of the hot issues in the field of geotechnical engineering.The traditional monitoring and early warning methods of monitoring indicators are relatively uniform, with more attention being paid to the identification of accelerated damage precursors, which means that the early warning of collapse disasters has many inherent difficulties.In fact, rockblock collapse is caused by the dynamic failure of system instability, so it can be more effective to apply kinetic monitoring indicators to realize more scientific early warnings.In this paper, dynamic monitoring indexes were introduced to summarize the dynamic responses of rock and soil failure processes.A dynamic monitoring index based on natural vibration frequency can provide data for detecting damage in a dangerous rock mass.Based on the latest experimental research, it is concluded that the dynamic monitoring index can effectively reflect changes in physical and mechanical characteristics, and thus, can be used to dynamically and quantitatively analyze the damage and stability of a rock mass.A review of the literature on the current development of this field in China and abroad indicates that the early warning method of rock mass collapse disaster based on precursor failure identification in the detachment phase has better timeliness and will also to prove be more useful in future.Meanwhile, the development of an early warning index system of collapse is forecasted.An early monitoring and early warning index system based on dynamic, static, and environmental quantity indexes has greater potential for effective engineering monitoring and disaster warning.However, this new early warning method and its tripartite early warning indicator system offers a foundation for better responses to rock collapse in high-risk regions, and thus can improve the current passive prevention approach of rock-block monitoring and reduce the casualties and property losses that follow instantaneous rock collapse.This paper provides an effective reference for researchers studying early warning systems and the prevention of brittle damage disasters such as collapse.
-
表 1 實驗數據誤差分析
Table 1. Analysis of the experimental data error
模型 有效黏結面積/m2 實際折減系數/% 頻率/Hz 計算折減系數/% 誤差/% 1# 0.048 - 310 - - 2# 0.030 62.5 210 67.7 5.2 3# 0.015 31.3 111 35.4 4.1 表 2 不同階段的預警效果
Table 2. Warning effects at different stages
階段 穩定階段 分離階段 分離→加速 加速階段 破壞階段 一般持續時間 幾十年 多天 數十秒 數秒 數十毫秒 距破壞時刻 - 10s以遠 10s以遠 10s以內 1s以內 預警時效性 太久 合適 合適 差 差 259luxu-164 -
參考文獻
[1] Strom A L, Korup O. Extremely large rockslides and rock avalanches in the Tien Shan mountains, Kyrgyzstan. Landslides, 2006, 3(2): 125 doi: 10.1007/s10346-005-0027-7 [2] Aref M, Nei L, Abdo S. Causes of rockfalls in Ai-Huwayshah area, Yemen. Global Geol, 2009, 12(1): 5 http://www.cqvip.com/QK/87465A/20091/29795648.html [3] Frayssines M, Hantz D. Modelling and back-analysing failures in steep limestone cliffs. Int J Rock Mech Min Sci, 2009, 46 (7): 1115 doi: 10.1016/j.ijrmms.2009.06.003 [4] Huang R Q, Liu W H, Zhou J P, et al. Experimental field study of movement characteristics of rock blocks falling down a slope. J Earth Sci, 2010, 21(3): 330 doi: 10.1007/s12583-010-0096-y [5] Youssef A M, Maerz N H, Al-Otaibi A A. Stability of rock slopes along Raidah escarpment road, Asir Area, Kingdom of Saudi Arabia. J Geog Geol, 2012, 4(2): 48 http://www.oalib.com/paper/2812920 [6] Royán M J, Abellán A, Jaboyedoff M, et al. Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR. Landslides, 2014, 11(4): 697 doi: 10.1007/s10346-013-0442-0 [7] Wang X L, Frattini P, Crosta G B, et al. Uncertainty assessment in quantitative rockfall risk assessment. Landslides, 2014, 11 (4): 711 doi: 10.1007/s10346-013-0447-8 [8] Xu Q, Huang R Q, Yin Y P, et al. The jiweishan landslide of June 5, 2009 in wulong, Chongqing: characteristics and failure mechanism. J Eng Geol, 2009, 17(4): 433 doi: 10.3969/j.issn.1004-9665.2009.04.001許強, 黃潤秋, 殷躍平, 等. 2009年6.5重慶武隆雞尾山崩滑災害基本特征與成因機理初步研究. 工程地質學報, 2009, 17(4): 433 doi: 10.3969/j.issn.1004-9665.2009.04.001 [9] Zhang Y X, Lu L, Zhang S P, et al. Development and failure principle of differential weathering overhanging rock. J Civil Arch Environ Eng, 2010, 32(2): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201002002.htm張永興, 盧黎, 張四平, 等. 差異風化型危巖形成和破壞機理. 土木建筑與環境工程, 2010, 32(2): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201002002.htm [10] Wang S H, Yang Y, Wang Y, et al. Spatial modelling and quick identification of unstable rock blocks based on digital photogrammetry. Chin J Rock Mech Eng, 2010, 29(Suppl 1): 3432 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1122.htm王述紅, 楊勇, 王洋, 等. 基于數字攝影測量的開挖空間模型及不穩塊體的快速識別. 巖石力學與工程學報, 2010, 29 (增刊1): 3432 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1122.htm [11] Chen H K, Xian X F, Tang H M. Developing mechanism for collapse disaster in rocky mountain area——Taking Mt. Hongyan in the national scenic spots of Simianshan as an example. J Sichuan Univ Eng Sci Ed, 2010, 42(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201003003.htm陳洪凱, 鮮學福, 唐紅梅. 石質山區崩塌災害形成機制——以四面山國家級風景名勝區紅巖山為例. 四川大學學報(工程科學版), 2010, 42(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201003003.htm [12] Chen H K, Xian X F, Tang H M. Stability analysis method for perilous rock by fracture mechanics. J Chongqing Univ, 2009, 32(4): 434 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200904017.htm陳洪凱, 鮮學福, 唐紅梅. 危巖穩定性斷裂力學計算方法. 重慶大學學報, 2009, 32(4): 434 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200904017.htm [13] Chen H K, Zhang R G, Tang H M, et al. Elastic & impulsive dynamic parameters of a ruptured compression-shear perilous rock. J Vib Shock, 2012, 31(24): 30 doi: 10.3969/j.issn.1000-3835.2012.24.007陳洪凱, 張瑞剛, 唐紅梅, 等. 壓剪型危巖破壞彈沖動力參數研究. 振動與沖擊, 2012, 31(24): 30 doi: 10.3969/j.issn.1000-3835.2012.24.007 [14] Chen H K, Tang H M, Wang Z, et al. Frequency domain characteristics of excitation signals for rupture of perilous rocks. J Vib Shock, 2014, 33(19): 64 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201419013.htm陳洪凱, 唐紅梅, 王智, 等. 危巖破壞激振信號頻域特征研究. 振動與沖擊, 2014, 33(19): 64 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201419013.htm [15] Chen H K, Yang M, Tang H M, et al. Probabilistic and statistic characteristics of excitation signals during rupture of perilous rock. J Vib Shock, 2015, 34(8): 139 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201508024.htm陳洪凱, 楊銘, 唐紅梅, 等. 危巖破壞激振信號概率統計特征研究. 振動與沖擊, 2015, 34(8): 139 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201508024.htm [16] Valentin J, Capron A, Jongmans D, et al. The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modelling. Geophys J Int, 2017, 208(2): 1058 doi: 10.1093/gji/ggw440 [17] Stead D, Eberhardt E, Coggan J S. Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng Geol, 2006, 83(1-3): 217 doi: 10.1016/j.enggeo.2005.06.033 [18] Chen W, Xu Z M, Liu W L. Mechanical model and failure mechanism of unstable cantilevered rock blocks due to differential weathering. Rock Soil Mech, 2015, 36(1): 195 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501027.htm陳維, 徐則民, 劉文連. 差異風化型危巖力學模型及破壞機制研究. 巖土力學, 2015, 36(1): 195 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501027.htm [19] Farrar C R, Doebling S W.An overview of modal-based damage identification methods [J/OL].CiteSeerx Digital Library (2018- 12-21)[2019-03-27].http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.2798&rep=rep1&type=pdf [20] Benedetti A, Pignagnoli G, Tarozzi M. Damage identification of cracked reinforced concrete beams through frequency shift. Mater Struct, 2018, 51(6): 147 doi: 10.1617/s11527-018-1275-z [21] Goyal D, Pabla B S. The vibration monitoring methods and signal processing techniques for structural health monitoring: a review. Arch Comput Method E, 2016, 23(4): 585 doi: 10.1007/s11831-015-9145-0 [22] Jiang Y J, Gao Y, Li B, et al. Research on health assessment technique of tunnel lining based on power spectrum density characteristics of microtremors. J Jpn Soc Civil Engineers, 2012, 68 (3): 111 [23] Wang L G, Huang R Q, Zhang Z Y, et al. Dynamic models on the process of landslide hazards. Prog Nat Sci, 1998, 8 (2): 224 doi: 10.3321/j.issn:1002-008X.1998.02.015王來貴, 黃潤秋, 張倬元, 等. 滑坡災害發生的動力學模型. 自然科學進展, 1998, 8(2): 224 doi: 10.3321/j.issn:1002-008X.1998.02.015 [24] Lin C G.A Study on the Dynamic of Slope Stability at the 921Chi-Chi Earthquake in Taiwan [Dissertation].Chongqing: Chongqing University, 2003林成功. 臺灣921集集大地震滑坡動力分析研究[學位論文]. 重慶: 重慶大學, 2003 [25] Zheng L, Chen G Q, Zen K K, et al. Validation of trampoline effect for earthquake induced landslides using numerical analysis. Memoirs Faculty Eng, Kyushu Univ, 2011, 71(4): 127 http://ci.nii.ac.jp/naid/80022211752/en [26] Yin Y P, Wang M, Li B, et al. Dynamic response characteristics of Daguangbao landslide triggered by Wenchuan Earthquake. Chin J Rock Mech Eng, 2012, 31(10): 1969 doi: 10.3969/j.issn.1000-6915.2012.10.003殷躍平, 王猛, 李濱, 等. 汶川地震大光包滑坡動力響應特征研究. 巖石力學與工程學報, 2012, 31(10): 1969 doi: 10.3969/j.issn.1000-6915.2012.10.003 [27] Burjánek J, Gassner-Stamm G, Poggi V, et al. Ambient vibration analysis of an unstable mountain slope. Geophys J Int, 2010, 180(2): 820 doi: 10.1111/j.1365-246X.2009.04451.x [28] Burjánek J, Moore J R, Yugsi Molina F X, et al. Instrumental evidence of normal mode rock slope vibration. Geophys J Int, 2012, 188(2): 559 doi: 10.1111/j.1365-246X.2011.05272.x [29] Gao Y, Jiang Y J, Li B. Estimation of effect of voids on frequency response of mountain tunnel lining based on microtremor method. Tunnell Undergr Space Technol, 2014, 42: 184 doi: 10.1016/j.tust.2014.03.004 [30] Li H J, Yang H Z. Research progress on modal parameter identification and damage diagnosis for offshore platform structures. Eng Mech, 2004, 21(Suppl 1): 116 https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2004S1008.htm李華軍, 楊和振. 海洋平臺結構參數識別和損傷診斷技術的研究進展. 工程力學, 2004, 21(增刊1): 116 https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2004S1008.htm [31] Du Y, Xie M W, Jiang Y J, et al. Experimental study on cumulative damage assessment of rock-block using a laser Doppler vibrometer. Chin J Eng, 2017, 39(1): 141 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201701018.htm杜巖, 謝謨文, 蔣宇靜, 等. 應用激光多普勒測振儀的巖塊體累計損傷評價試驗研究. 工程科學學報, 2017, 39 (1): 141 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201701018.htm [32] Ma G, Sawada K, Saito H, et al. Study on evaluating rock block stability by using a remotely positioned laser Doppler vibrometer. Int J Geomate, 2012, 2(2): 247 http://ci.nii.ac.jp/naid/40019407174 [33] Qi S W, Wu F Q, Liu C L, et al. Engineering geology analysis on stability of slope under earthquake. Chin J Rock Mech Eng, 2004, 23(16): 2792 doi: 10.3321/j.issn:1000-6915.2004.16.024祁生文, 伍法權, 劉春玲, 等. 地震邊坡穩定性的工程地質分析. 巖石力學與工程學報, 2004, 23(16): 2792 doi: 10.3321/j.issn:1000-6915.2004.16.024 [34] Feng X T, Zhang Z Q, Sheng Q. Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method. Int J Rock Mech Min Sci, 2000, 37(7): 1039 doi: 10.1016/S1365-1609(00)00035-6 [35] Wang D Y, Zhu Y L, Zhao S P, et al. Study on experimental determination of the dynamic elastic mechanical parameters of frozen soil by ultrasonic technique. Chin J Geotech Eng, 2002, 24 (5): 612 doi: 10.3321/j.issn:1000-4548.2002.05.016王大雁, 朱元林, 趙淑萍, 等. 超聲波法測定凍土動彈性力學參數試驗研究. 巖土工程學報, 2002, 24(5): 612 doi: 10.3321/j.issn:1000-4548.2002.05.016 [36] Ma G C, Sawada K, Yashima A, et al. Experimental study of the applicability of the remotely positioned laser Doppler vibrometer to Rock-Block stability assessment. Rock Mech Rock Eng, 2015, 48(2): 787 doi: 10.1007/s00603-014-0577-x [37] Uehan F, Minoura S. Development of an aerial survey system and numerical analysis modeling software for unstable rock blocks. Q Rep RTRI, 2015, 56(3): 212 doi: 10.2219/rtriqr.56.212 [38] Du Y, Xie M W, Lü F X, et al. New method for dynamic analysis of rock slope stability based on modal parameters. Chin J Geotech Eng, 2015, 37(7): 1334 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507024.htm杜巖, 謝謨文, 呂夫俠, 等. 基于模態參量變化的邊坡動態穩定分析新方法. 巖土工程學報, 2015, 37(7): 1334 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507024.htm [39] Du Y, Xie M W, Jiang Y J, et al. Methods of determining warning indices based on natural frequency monitoring. Rock Soil Mech, 2015, 36(8): 2284 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201508023.htm杜巖, 謝謨文, 蔣宇靜, 等. 基于自振頻率的監測預警指標確定方法. 巖土力學, 2015, 36(8): 2284 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201508023.htm [40] Jia Y C.Study on Stability Model of Slope Dangerous Rock Mass Based on Dynamic Characteristics [Dissertation].Beijing: University of Science and Technology Beijing, 2018賈艷昌. 基于動力特征參數的邊坡危巖塊體穩定性模型研究[學位論文]. 北京: 北京科技大學, 2018 [41] Du Y, Xie M W, Jiang Y J, et al. A new method for landslides safety assessments based on natural vibration frequency. Chin J Eng, 2015, 37(9): 1118 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201509002.htm杜巖, 謝謨文, 蔣宇靜, 等. 基于固有振動頻率的滑坡安全評價新方法. 工程科學學報, 2015, 37(9): 1118 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201509002.htm [42] Jia Y C, Xie M W, Chang S X, et al. A model for evaluation of stability of sliding- and falling-type dangerous rock blocks based on natural vibration frequency. Rock Soil Mech, 2017, 38(7): 2149 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707040.htm賈艷昌, 謝謨文, 昌圣翔, 等. 基于固有振動頻率的滑移式和墜落式危巖塊體穩定性評價模型研究. 巖土力學, 2017, 38(7): 2149 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707040.htm [43] Du Y, Xie M W, Jiang Y J, et al. Experimental rock stability assessment using the frozen-thawing test. Rock Mech Rock Eng, 2017, 50(4): 1049 doi: 10.1007/s00603-016-1138-2 [44] Tao Z G, Li H P, Sun G L, et al. Development of monitoring and early warning system for landslides based on constant resistance and large deformation anchor cable and its application. Rock Soil Mech, 2015, 36(10): 3032 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510046.htm陶志剛, 李海鵬, 孫光林, 等. 基于恒阻大變形錨索的滑坡監測預警系統研發及應用. 巖土力學, 2015, 36(10): 3032 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510046.htm [45] 王延平. 崩塌災害變形破壞機理與監測預警研究. 成都: 成都理工大學, 2016 [46] Zheng A X, Luo X Q, Shen H. Numerical simulation and analysis of deformation and failure of jointed rock slopes by extended finite element method. Rock Soil Mech, 2013, 34(8): 2371 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308052.htm鄭安興, 羅先啟, 沈輝. 危巖主控結構面變形破壞的擴展有限元法模擬分析. 巖土力學, 2013, 34(8): 2371 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308052.htm [47] Shen T, Wang Y S, Zhang Y H. Numerical simulation of formation mechanism of the Zaojiaotuo collapse. J Mountain Sci, 2016, 34(4): 442 https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201604009.htm申通, 王運生, 張云輝. 皂角沱崩塌形成機制數值模擬. 山地學報, 2016, 34(4): 442 https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201604009.htm [48] He M C. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application. Chin J Rock Mech Eng, 2009, 28(6): 1081 doi: 10.3321/j.issn:1000-6915.2009.06.001何滿潮. 滑坡地質災害遠程監測預報系統及其工程應用. 巖石力學與工程學報, 2009, 28(6): 1081 doi: 10.3321/j.issn:1000-6915.2009.06.001 [49] S?ttele M, Krautblatter M, Bründl M, et al. Forecasting rock slope failure: how reliable and effective are warning systems? Landslides, 2016, 13(4): 737 [50] Zubelewicz A. Precursors of dynamic excitations and rupture in rocks. Rock Mech Rock Eng, 2017, 50(6): 1667 doi: 10.1007/s00603-017-1167-5 [51] Uehan F, Saito H, Ma G.Fundamental study on the remote vibration measuring system for evaluating rock slope stability//15th World Conference on Earthquake Engineering.Lisbon, 2012 [52] Du Y, Xie M W, Jiang Y J, et al. Safety monitoring experiment of unstable rock based on natural vibration frequency. Rock Soil Mech, 2016, 37(10): 3035 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610040.htm杜巖, 謝謨文, 蔣宇靜, 等. 基于固有振動頻率的危巖安全監測試驗研究. 巖土力學, 2016, 37(10): 3035 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610040.htm [53] Du Y, Zheng X T, Xie M W, et al. Strength weakening characteristic of rock burst structural planes. Chin J Eng, 2018, 40 (3): 269 doi: 10.13374/j.issn2095-9389.2018.03.002杜巖, 鄭孝婷, 謝謨文, 等. 巖爆結構面強度的弱化特征. 工程科學學報, 2018, 40(3): 269 doi: 10.13374/j.issn2095-9389.2018.03.002 [54] Siringoringo D M, Fujino Y. Experimental study of laser Doppler vibrometer and ambient vibration for vibration-based damage detection. Eng Struct, 2006, 28(13): 1803 doi: 10.1016/j.engstruct.2006.03.006 [55] Bonilla-Sierra V, Scholtès L, Donzé F V, et al. Rock slope stability analysis using photogrammetric data and DFN-DEM modelling. Acta Geotech, 2015, 10(4): 497 doi: 10.1007/s11440-015-0374-z [56] Huang R Q, Chen G Q, Tang P. Precursor information of locking segment landslides based on transient characteristics. Chin J Rock Mech Eng, 2017, 36(3): 521 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm黃潤秋, 陳國慶, 唐鵬. 基于動態演化特征的鎖固段型巖質滑坡前兆信息研究. 巖石力學與工程學報, 2017, 36(3): 521 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm [57] Li P.Theoretical and Experimental Analysis of the Dynamic Properties of Offshore Platforms[Dissertation].Qingdao: Ocean University of China, 2011李萍. 海洋平臺結構動力特性參數識別的理論與實驗研究[學位論文]. 青島: 中國海洋大學, 2011 [58] Du Y.Study on the Model of Rock Block Stability Evaluation based on Natural Vibration Frequency[Dissertation].Beijing: University of Science and Technology Beijing, 2016杜巖. 基于固有振動頻率的危巖塊體穩定評價模型研究[學位論文]. 北京: 北京科技大學, 2016 -