Evaluation of cleanliness and distribution of inclusions in the thickness direction of interstitial free (IF) steel slabs
-
摘要: 為了減少IF鋼生產過程中冷軋板缺陷以及降低夾雜物對鋼的成材性能的影響,重要的是明確IF鋼鑄坯厚度方向夾雜物分布規律,本文采用氧氮分析、掃描電鏡和能譜分析、夾雜物自動掃描以及原貌分析等手段進行了系統的分析。結果表明,鑄坯厚度方向T.O(總氧)和N的平均質量分數值分別為1.6×10?5和1.7×10?5,T.O在內弧表面1/8處最高,為2.0×10?5,內弧1/8~3/8區間N質量分數較高,為1.8×10?5;共統計1177個夾雜物,70%以上夾雜物的尺寸都在5 μm以內,平均尺寸為2.8 μm,內、外弧3/8處夾雜物平均尺寸較大,分別為4.0 μm、4.4 μm;鑄坯中心TiN析出量較多,內外弧表面以Al2O3和Al2O3?TiOx為主,尺寸在5~10 μm之間,Al2O3?TiN在內外弧1/4處呈不規則狀,尺寸在3~5 μm;當凝固率0.646 < f ≤ 0.680時,凝固前沿液相以及δ相中開始有TiN析出,尺寸在3~6 μm之間波動。Abstract: During the production of Al-killed titanium-alloyed interstitial free steel, to reduce defects in cold rolled sheets and decrease the influence of inclusions on the properties of the steel, it is important to clarify the distribution of inclusions in the thickness direction of IF (interstitial free) steel along the slab. In this study, standard metallographic techniques were employed to analyze the total oxygen and nitrogen by performing scanning electron microscopy, energy spectroscopy, automatic scanning electron microscopy, and original morphology analysis. The results show that the average mass fractions of T.O and N are 1.6 × 10?5 and 1.7 × 10?5, respectively, and the T.O for the 1/8 thickness from the inner arc is 2.0 × 10?5, while the content of N for between the 1/4 and 3/8 thickness from the inner arc is 1.8 × 10?5. A total of 1177 inclusions were counted. More than 70% of inclusions are within 5 μm in size, and the average size of inclusions in the thickness direction is 2.8 μm. The sizes of inclusions for the 3/8 thickness from both the inner and outer arcs are larger at 4.0 μm and 4.4 μm, respectively. The amount of precipitation of TiN is large in the slab center, and there are mainly Al2O3 and Al2O3–TiOx near the inner and outer arc surfaces with sizes between 5 and 10 μm. Al2O3–TiN distributes irregularly in the 1/4 thickness from the inner and outer arcs, and the size fluctuates between 3 and 5 μm. The size of TiN during solidification fluctuates between 3 and 6 μm. TiN precipitates in the liquid and δ phase of the solidification front when the solidification rate is between 0.646 and 0.680, and the size fluctuates between 3 and 6 μm.
-
Key words:
- slabs /
- thickness /
- inclusions /
- distribution /
- titanium nitride /
- precipitation
-
圖 7 IF鋼鑄坯厚度方向夾雜物類型和尺寸變化分布圖. (a) 不同類型夾雜物尺寸分布;(b) 夾雜物尺寸分布圖;(c) 氧化夾雜物的面積占比分布圖;(d) TiN的面積占比分布圖
Figure 7. Type and size changes and distribution of inclusions in the thickness direction of the IF slab: (a) the type and size changes and distribution of different inclusions; (b) size changes of the inclusion; (c) density distribution of oxide inclusions; (d) density distribution of TiN
表 1 試驗鑄坯化學成分(質量分數)
Table 1. Chemical composition of the test steel slab
% C Si Mn P S Als Ti T.O N 0.0015 0.0050 0.1300 0.0110 0.0050 0.0450 0.0600 0.0022 0.0025 表 2 夾雜物成分(質量分數)
Table 2. Composition of inclusions
% 位置 O Al Ti N Mg S Fe 圖6(a) 38.47 43.37 1.27 — — — 16.89 圖6(b) 56.84 43.16 — — — — — 圖6(c) 43.45 56.55 — — — — — 圖6(d) 50.03 49.72 0.25 — — — — 圖6(e) 34.00 42.78 5.57 — — 1.13 16.33 圖6(f) 38.69 50.84 8.43 2.04 — — — 圖6(g) 36.42 42.78 19.52 — 1.29 — — 圖6(h) 39.98 47.05 12.97 — — — — 圖6(i) 13.15 1.47 35.15 28.13 — — 22.09 圖6(j) 11.19 14.34 46.05 28.42 — — — 圖6(k) 8.29 9.21 47.30 35.20 — — — 圖6(l) 20.96 13.54 35.30 30.20 — — — 圖6(m) 5.87 — 56.33 14.62 — — 23.17 圖6(n) — — 70.08 29.29 — — — 圖6(o) — — 79.29 17.77 — — — 圖6(p) — — 65.16 34.84 — — — 反應式 標準吉布斯自由能/(J·mol?1) 3[Ti]+5[O]=Ti3O5(s) $\Delta {G^{\ominus}}$=?1772320+569.32T 2[Al]+3[O]=Al2O3(s) $\Delta {G^{\ominus}}$=?1208271+390.91T Ti3O5(s)+10/3[Al]=5/3Al2O3(s)+3[Ti] $\Delta {G^{\ominus}}$=?241466+82.22T 注:T為反應溫度。 元素 Al Ti O C Si Mn P S Al 0.045 0.004 ?1.4 0.091 0.056 — 0.029 0.03 O ?0.83 ?0.6 ?0.12 ?0.45 ?0.131 ?0.021 0.07 ?3.9 Ti 0.004 0.013 ?1.8 — 2.1 ?0.043 ?0.06 ?0.27 表 5 不同析出反應的標準吉布斯自由能
Table 5. Standard Gibbs free energies for different precipitates
序號 反應式 標準吉布斯自由能/(J·mol?1) ① [Ti]+[N]=TiN(s) $\Delta {G^{\ominus}}$=?291000+107.91T ② [Ti]+[S]=TiS(s) $\Delta {G^{\ominus}}$=?153000+77T ③ [Mn]+[S]=MnS(s) $\Delta {G^{\ominus}}$=?177650+99.45T 表 6 鋼中各元素的相互作用系數
Table 6. Interaction coefficients of the elements
元素 Al Ti O C Si Mn P S N Ti 0.004 0.013 ?1.8 — 2.1 ?0.043 ?0.06 ?0.27 ?2.06 N ?0.01 ?0.6 ?0.12 0.13 0.048 ?0.02 0.059 0.007 0 Mn — ?0.05 ?0.083 ?0.054 ?0.0327 0 ?0.06 ?0.048 ?0.091 S 0.041 ?0.18 ?0.27 0.111 0.075 ?0.029 0.035 ?0.046 0.01 259luxu-164 -
參考文獻
[1] Wang R, Bao Y P, Yan Z J, et al. Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets. Int J Miner Metall Mater, 2019, 26(2): 178 doi: 10.1007/s12613-019-1722-z [2] Guo J L, Bao Y P, Wang M. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes. Int J Miner Metall Mater, 2017, 24(12): 1370 doi: 10.1007/s12613-017-1529-8 [3] 肖超, 崔衡. Al含量對汽車用高強鋼中夾雜物的影響. 工程科學學報, 2018, 40(增刊1):29)Xiao C, Cui H. Effect of Al content on inclusions in the automobile high strength steel. Chin J Eng, 2018, 40(增刊1): 29 [4] Zhao C L, Tang F P, Zhu X L, et al. Experiment on distribution characteristics of surface inclusions in IF steel continuous casting billet steel making. Iron Steel, 2017, 52(12): 42趙成林, 唐復平, 朱曉雷, 等. IF鋼連鑄坯表層夾雜分布特征的試驗. 鋼鐵, 2017, 52(12):42 [5] Zhou M, Jiang M, Yuan P, et al. Characterization of large inclusions along the thickness direction in the ultra-low carbon steel slab. Steelmaking, 2016, 32(2): 60周萌, 姜敏, 苑鵬, 等. 超低碳鋼連鑄坯厚度方向大尺寸夾雜物分布特征. 煉鋼, 2016, 32(2):60 [6] Wang M, Bao Y P, Cui H, et al. Surface cleanliness evaluation in Ti stabilised ultralow carbon (Ti-IF) steel. Ironmaking Steelmaking, 2011, 38(5): 386 doi: 10.1179/1743281211Y.0000000016 [7] Wang M, Bao Y P, Yang Q, et al. Cleanliness evolution of interstitial free (IF) steel slabs in the thickness direction. Chin J Eng, 2015, 37(3): 307王敏, 包燕平, 楊荃, 等. IF鋼鑄坯厚度方向潔凈度演變. 工程科學學報, 2015, 37(3):307 [8] 彭著剛, 齊江華, 楊成威. 頂渣改質工藝對IF鋼夾雜物的影響. 工程科學學報, 2018, 40(增刊1):177)Peng Z G, Qi J H, Yang C W. Influence of slag denaturalization on inclusions in IF steel. Chin J Eng, 2018, 40(增刊1): 177 [9] Guo J L, Bao Y P, Wang M. Steel slag in China: treatment, recycling, and management. Waste Manage, 2018, 78: 318 doi: 10.1016/j.wasman.2018.04.045 [10] Gu C, Zhao L H, Gan P. Revolution and control of Fe?Al?Ti?O complex oxide inclusions in ultralow-carbon steel during refining process. Chin J Eng, 2019, 41(6): 757顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe?Al?Ti?O類復合氧化物夾雜的演變與控制. 工程科學學報, 2019, 41(6):757 [11] Bao Y P, Wang M, Jiang W. A method for observing the three-dimensional morphologies of inclusions in steel. Int J Miner Metall Mater, 2012, 19(2): 111 doi: 10.1007/s12613-012-0524-3 [12] Wang H, Li J, Shi C B, et al. Evolution of Al2O3 inclusions by magnesium treatment in H13 hot work die steel. Ironmaking Steelmaking, 2017, 44(2): 128 doi: 10.1080/03019233.2016.1165498 [13] Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall Mater Trans B, 1970, 1(7): 1987 doi: 10.1007/BF02642799 [14] Yang L. Generation Mechanism and Control Technology of TiN Inclusion for GCr15SiMn in ESR Process[Dissertation]. Beijing: University of Science and Technology Beijing, 2017楊亮. 電渣重熔GCr15SiMn軸承鋼TiN夾雜物形成機理及控制工藝[學位論文]. 北京: 北京科技大學, 2017 [15] Chase Jr M W, Curnutt J L, Downey Jr J R, et al. JANAF thermochemical tables, 1982 supplement. J Phys Chem Ref Data, 1982, 11(3): 695 doi: 10.1063/1.555666 [16] Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel. Metall Mater Trans B, 1997, 28(5): 953 doi: 10.1007/s11663-997-0023-5 [17] Choudhary S K, Ghosh A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ Int, 2009, 49(12): 1819 doi: 10.2355/isijinternational.49.1819 [18] Chen J X. Steelmaking Common Chart Data Sheet. 2nd Ed. Beijing: Metallurgical Industry Press, 2010陳家祥. 煉鋼常用圖表數據手冊. 2版. 北京: 冶金工業出版社, 2010 [19] Kraft T, Chang Y A. Predicting microstructure and microsegregation in multicomponent alloys. JOM, 1997, 49(12): 20 doi: 10.1007/s11837-997-0025-4 [20] Guo H J. Metallurgical Physical Chemistry Course. 2nd Ed. Beijing: Metallurgical Industry Press, 2006郭漢杰. 冶金物理化學教程. 2版. 北京: 冶金工業出版, 2006 [21] Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification. Metall Trans B, 1986, 17(4): 845 doi: 10.1007/BF02657148 [22] Ganesan S, Poirier D R. Solute redistribution in dendritic solidification with diffusion in the solid. J Cryst Growth, 1989, 97(3-4): 851 doi: 10.1016/0022-0248(89)90587-3 [23] Ohnaka I. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase. Trans Iron Steel Inst Jpn, 1986, 26(12): 1045 doi: 10.2355/isijinternational1966.26.1045 [24] Goto H, Miyazawa K, Yamada W, et al. Effect of cooling rate on composition of oxides precipitated during solidification of steels. ISIJ Int, 1995, 35(6): 708 doi: 10.2355/isijinternational.35.708 [25] Wang J Y, Liu J H, Liu J F, et al. Precipitation mechanism and behavior of TiN during Ti-IF steel solidification. J Univ Sci Technol Beijing, 2014, 36(8): 1025王金永, 劉建華, 劉建飛, 等. Ti-IF鋼凝固過程中TiN的析出機理和規律. 北京科技大學學報, 2014, 36(8):1025 [26] Hu H Q. Principle of Metal Solidification. Beijing: Mechanical Industry Press, 1998胡漢起. 金屬凝固原理. 北京: 機械工業出版社, 1998 [27] Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels. Metall Mater Trans A, 2001, 32(7): 1755 doi: 10.1007/s11661-001-0152-4 [28] Ma Z T, Janke D. Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ Int, 1998, 38(1): 46 doi: 10.2355/isijinternational.38.46 -