<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

側向沖擊荷載下鋼筋混凝土墩柱的性能

趙武超 錢江

趙武超, 錢江. 側向沖擊荷載下鋼筋混凝土墩柱的性能[J]. 工程科學學報, 2019, 41(3): 408-415. doi: 10.13374/j.issn2095-9389.2019.03.015
引用本文: 趙武超, 錢江. 側向沖擊荷載下鋼筋混凝土墩柱的性能[J]. 工程科學學報, 2019, 41(3): 408-415. doi: 10.13374/j.issn2095-9389.2019.03.015
ZHAO Wu-chao, QIAN Jiang. Performance of reinforced concrete pier columns subjected to lateral impact[J]. Chinese Journal of Engineering, 2019, 41(3): 408-415. doi: 10.13374/j.issn2095-9389.2019.03.015
Citation: ZHAO Wu-chao, QIAN Jiang. Performance of reinforced concrete pier columns subjected to lateral impact[J]. Chinese Journal of Engineering, 2019, 41(3): 408-415. doi: 10.13374/j.issn2095-9389.2019.03.015

側向沖擊荷載下鋼筋混凝土墩柱的性能

doi: 10.13374/j.issn2095-9389.2019.03.015
基金項目: 

國家自然科學基金資助項目 51438010

詳細信息
    通訊作者:

    錢江, E-mail: jqian@#edu.cn

  • 中圖分類號: O347.1;TU375

Performance of reinforced concrete pier columns subjected to lateral impact

More Information
  • 摘要: 采用數值仿真技術建立了足尺鋼筋混凝土墩柱精細有限元模型, 分析了側向沖擊荷載下墩柱的動態響應和抗沖擊性能, 提出了一種基于截面損傷因子的損傷評估方法, 討論了不同碰撞參數對鋼筋混凝土墩柱破壞模式和損傷機理的影響.結果表明: 沖擊荷載下鋼筋混凝土墩柱的耗能主要分為接觸區域局部耗能和構件整體耗能; 當沖擊體的初始動能恒定時, 沖擊質量和沖擊速度的不同組合會導致鋼筋混凝土墩柱損傷破壞機理的顯著差異; 基于截面損傷因子的損傷評估方法可以比較準確地描述墩柱的破壞狀態.軸壓力對墩柱抗撞能力的有利貢獻比較有限, 且墩柱隨著軸力的增大更易發生剪切破壞; 沖頭剛度對碰撞力和墩柱動態響應的影響十分顯著.

     

  • 圖  1  鋼筋混凝土梁的尺寸及配筋(單位: mm)

    Figure  1.  Dimension and reinforcement layout of reinforced concrete beams (unit: mm)

    圖  2  沖擊試驗有限元模型

    Figure  2.  Finite element model for the impact test

    圖  3  沖擊后鋼筋混凝土梁的損傷分布對比

    Figure  3.  Comparison of damage patterns of the impacted reinforced concrete beam

    圖  4  碰撞力(a) 和跨中撓度(b) 試驗和模擬結果對比

    Figure  4.  Experimental and simulated results comparison of impact force (a) and mid-span displacement (b)

    圖  5  鋼筋混凝土墩柱有限元模型(單位: mm)

    Figure  5.  Finite element model of reinforced concrete pier column (unit: mm)

    圖  6  沖擊作用下墩柱損傷演變過程. (a) 3 ms; (b) 9 ms; (c) 30 ms; (d) 80 ms

    Figure  6.  Damage development of reinforced concrete pier under impact loading: (a) 3 ms; (b) 9 ms; (c) 30 ms; (d) 80 ms

    圖  7  碰撞力和位移時程曲線

    Figure  7.  Time history of the impact force and displacement

    圖  8  系統能量變化過程

    Figure  8.  Varied processes of the system energy

    圖  9  損傷因子沿高度的分布

    Figure  9.  Distribution of damage factor along pier height

    圖  10  帶彈簧沖頭的沖擊體

    Figure  10.  Impact body with spring nose

    圖  11  各個工況下鋼筋混凝土墩柱的損傷狀態

    Figure  11.  Damage states of the reinforced concrete pier columns

    圖  12  碰撞剛度對碰撞力影響對比

    Figure  12.  Effect of impact stiffness on the impact force

    圖  13  沖量、耗能分別與初始動量、動能的比值

    Figure  13.  Ratios of the impulse to the initial momentum and the inter-nal energy to the initial kinetic energy

    圖  14  碰撞力峰值與初始動能的關系

    Figure  14.  Relationships of peak impact force and initial kinetic energy

    圖  15  墩柱各部分材料耗能與初始動能的比值

    Figure  15.  Ratios of the energy dissipation of material composition to the initial kinetic energy

    表  1  墩柱設計參數及動態響應

    Table  1.   Design parameters and dynamic response of the reinforced concrete pier columns

    設計工況 沖擊質量/
    t
    沖擊速度/
    (m·s-1)
    初始動能/
    kJ
    軸壓比/
    %
    沖擊體彈簧剛度/
    (MN·m-1)
    碰撞力峰值/
    MN
    碰撞點最大位移/
    mm
    體系沖量/
    (kN·s)
    墩柱耗能/
    kJ
    損傷因子,
    ds
    墩柱破壞狀態
    C1 10 15 1125 0 16.97 190 168 1068 0.903 構件失效
    C2 10 15 1125 7 17.60 179 167 1066 0.895 重度損傷
    C3 10 15 1125 14 18.37 189 160 1084 0.912 構件失效
    C4 10 15 1125 28 19.27 127 構件失效
    C5 10 15 1125 7 20 6.14 54 280 241 0.814 重度損傷
    C6 10 15 1125 7 200 12.21 191 163 1025 0.917 構件失效
    C7 10 15 1125 7 2000 16.26 182 168 1060 0.903 構件失效
    C8 5 10 250 7 12.49 26 61 218 0.795 重度損傷
    C9 5 15 562.5 7 16.61 59 87 512 0.854 重度損傷
    C10 5 20 1000 7 20.55 132 110 949 0.902 構件失效
    C11 5 25 1562.5 7 24.73 211 135 1493 0.917 構件失效
    C12 10 10 500 7 13.54 60 120 440 0.875 重度損傷
    C13 10 20 2000 7 21.48 212 構件失效
    C14 20 5 250 7 9.35 37 130 198 0.794 重度損傷
    C15 20 10 1000 7 14.12 173 228 929 0.885 重度損傷
    C16 20 15 2250 7 18.21 272 構件失效
    C17 30 5 375 7 9.54 56 188 307 0.850 重度損傷
    C18 30 10 1500 7 14.33 281 構件失效
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Tian L, Zhu C. Damage evaluation and protection technique of RC columns under impulsive load. Eng Mech, 2013, 30(9): 144 https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201309023.htm

    田力, 朱聰. 碰撞沖擊荷載作用下鋼筋混凝土柱的損傷評估及防護技術. 工程力學, 2013, 30(9): 144 https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201309023.htm
    [2] Cheng X W, Li Y, Lu X Z, et al. Numerical investigation on dynamic response of reinforced concrete columns subjected to impact loading. Eng Mech, 2015, 32(2): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201502009.htm

    程小衛, 李易, 陸新征, 等. 撞擊荷載下鋼筋混凝土柱動力響應的數值研究. 工程力學, 2015, 32(2): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201502009.htm
    [3] Loedolff M J. The Behaviour of Reinforced Concrete Cantilever Columns under Lateral Impact Load[Dissertation]. Stellenbosch: Stellenbosch Universityx, 1989
    [4] Liu F, Luo Q Z, Yan B, et al. Numerical study on the failure mode of RC column subjected to lateral impact. J Vib Shock, 2017, 36(16): 122 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201716019.htm

    劉飛, 羅旗幟, 嚴波, 等. RC柱側向沖擊破壞模式的數值模擬研究. 振動與沖擊, 2017, 36(16): 122 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201716019.htm
    [5] Demartino C, Wu J G, Xiao Y. Response of shear-deficient reinforced circular RC columns under lateral impact loading. Int J Impact Eng, 2017, 109: 196 doi: 10.1016/j.ijimpeng.2017.06.011
    [6] Cai J, Ye J B, Chen Q J, et al. Dynamic behaviour of axiallyloaded RC columns under horizontal impact loading. Eng Struct, 2018, 168: 684 doi: 10.1016/j.engstruct.2018.04.095
    [7] Zhou X Y, Ma R J, Chen A R. Anti-shear reliability analysis for a reinforced concrete column subjected to rockfall impact. J Vib Shock, 2017, 36(7): 262 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201707039.htm

    周曉宇, 馬如進, 陳艾榮. 鋼筋混凝土柱式墩落石沖擊抗剪性能可靠性分析. 振動與沖擊, 2017, 36(7): 262 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201707039.htm
    [8] Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2014. China J High-way Transp, 2014, 27(5): 1 doi: 10.3969/j.issn.1001-7372.2014.05.001

    《中國公路學報》編輯部. 中國橋梁工程學術研究綜述2014. 中國公路學報, 2014, 27(5): 1 doi: 10.3969/j.issn.1001-7372.2014.05.001
    [9] Kishi N, Bhatti A Q. An equivalent fracture energy concept for nonlinear dynamic response analysis of prototype RC girders subjected to falling-weight impact loading. Int J Impact Eng, 2010, 37(1): 103 doi: 10.1016/j.ijimpeng.2009.07.007
    [10] Murray Y D. Users Manual for LS-DYNA Concrete Material Model 159. Report No. FHWA-HRT-05-062, 2007
    [11] Jones N. Structural Impact. 2nd Ed. New York: Cambridge University Press, 2012
    [12] Hallquist J O. LS-DYNA Keyword User's Manual Version 971. Livermore: Livermore Software Technology Corporation, 2007
    [13] Sharma H, Gardoni P, Hurlebaus S. Probabilistic demand model and performance-based fragility estimates for RC column subject to vehicle collision. Eng Struct, 2014, 74: 86 doi: 10.1016/j.engstruct.2014.05.017
    [14] Thilakarathna H M I. Vulnerability Assessment of Reinforced Concrete Columns Subjected to Vehicular Impacts. Queensland: Queensland University of Technology, 2010
    [15] Ministry of Housing and Urban-Rural Development, People's Republic of China. GB50010-2010 Code for Design of Concrete Structures. Beijing: China Architecture & Building Press, 2010

    中華人民共和國住房和城鄉建設部. GB50010-2010混凝土結構設計規范. 北京: 中國建筑工業出版社, 2010
  • 加載中
圖(15) / 表(1)
計量
  • 文章訪問數:  983
  • HTML全文瀏覽量:  375
  • PDF下載量:  33
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-02-28
  • 刊出日期:  2019-03-20

目錄

    /

    返回文章
    返回