Roundness error analysis of 25CrMo4 thick-walled hollow shaft by cross wedge rolling
-
摘要: 機械結構輕量化的主要途徑是在結構上采用空心軸.近年來, 采用楔橫軋帶芯棒軋制空心軸類件的工藝得到了較廣泛的關注.厚壁空心軸類件在楔橫軋軋制過程中易發生“失圓”現象.本文通過熱壓縮實驗研究了25CrMo4合金鋼在楔橫軋變形條件下熱變形行為, 獲得其真應力-應變曲線.在此基礎上, 基于Deform-3D有限元軟件, 建立25CrMo4厚壁空心軸楔橫軋有限元仿真模型, 分析厚壁空心軸楔橫軋成形機理, 研究得出斷面收縮率、成形角、展寬角對軋件不圓度的影響規律: 斷面收縮率增大, 不圓度減小; 成形角增大不圓度減小, 軋制溫度越高減小趨勢越明顯; 展寬角增大不圓度增大, 提高軋制溫度抑制增大趨勢.選取部分工藝參數進行楔橫軋驗證實驗, 對比了有限元仿真結果和實驗結果, 表明有限元仿真模型預測精度較高.Abstract: It is important for mechanical structures to be lightweight, and this is mainly realized by using hollow parts in structures. Presently, hollow shaft parts are used in vehicles, machine tools, and other equipment. Traditional hollow shaft parts are mainly manufactured by cutting, die forging, which have low production efficiency and low material utilization. With the increasing demand for hollow shafts, it is necessary to replace traditional processes with an efficient and advanced technology. Cross wedge rolling (CWR) has been widely used to produce shafts because of its advantages of higher productivity, better product quality, and lower material and energy consumption. Manufacturing of hollow shafts using cross wedge rolling with mandrel has received much attention. Phenomenon of roundness error often occurs in the formation of thick-walled hollow shafts using cross wedge rolling. Hot compression tests were conducted to investigate hot deformation behavior of alloy steel 25 CrMo4 in cross wedge rolling forming conditions, and true stress-strain curves were obtained. Based on the results, a finite element (FE) simulation model of cross wedge rolling for thick-walled hollow shafts was established using Deform-3 D, and formation mechanism and effects of area reduction, forming angle, and stretch angle on roundness error were analyzed. The simulation results indicate that the greater the area reduction, the smaller the roundness error; the greater the forming angle, the smaller the roundness error (where decrease in roundness error is facilitated by increasing rolling temperature); and the greater the stretch angle, the greater the roundness error (which is restrained by increasing the rolling temperature).Some process parameters were investigated by verifying the cross wedge rolling experiment, and the experimental results and simulation results were compared. The results show that the prediction accuracy of the FE model is high.
-
Key words:
- 25CrMo4 /
- thick-walled hollow shaft /
- cross-wedge rolling /
- numerical simulation /
- roundness error
-
表 1 軋制驗證實驗工藝參數
Table 1. Process parameters of the verification rolling experiment
成形角,
α/(°)展寬角,
β/(°)斷面收縮率,
ψ/%軋制溫度,
T/℃50,60 3,4 35,50,65 1050,1100 表 2 最大尺寸Dmax和不圓度e實驗值與仿真值對比
Table 2. Comparison of the Dmaxand e values obtained by experiment and simulation
工況 α/
(°)β/
(°)Ψ/
%T/
℃最大尺寸,Dmax/mm 不圓度,e/mm 實驗值 仿真值 相對誤差/% 實驗值 仿真值 相對誤差/% 1 50 3 35 1050 44.13 44.28 0.34 2.63 2.78 5.7 2 50 3 35 1100 43.19 42.77 0.97 1.69 1.27 24.9 3 60 3 35 1050 43.41 43.13 0.64 1.91 1.63 14.7 4 60 3 35 1100 43.20 42.60 1.39 1.70 1.10 35.3 5 50 4 35 1050 45.52 45.60 0.18 4.02 4.10 2.0 6 50 4 35 1100 43.70 43.88 0.41 2.20 2.38 8.2 7 50 4 50 1050 36.75 36.53 0.60 0.11 0.10 9.1 8 50 4 50 1100 36.61 36.52 0.25 0.11 0.08 27.3 9 50 4 65 1050 31.70 31.52 0.57 0.10 0.05 50.0 10 50 4 65 1100 31.60 31.52 0.25 0.05 0.05 0 259luxu-164 -
參考文獻
[1] Hu Z H, Yang C P, Wang B Y. Development of part rolling technology in China. J Mech Eng, 2012, 48(18): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201218004.htm胡正寰, 楊翠蘋, 王寶雨. 我國軸類零件軋制技術進展. 機械工程學報, 2012, 48(18): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201218004.htm [2] Zhang K S, Liu J P, Wang B Y, et al. Analysis on stable rolling condition of hollow workpiece rolled by cross wedge rolling. J Univ Sci Technol Beijing, 2001, 23(2): 155 doi: 10.3321/j.issn:1001-053X.2001.02.017張康生, 劉晉平, 王寶雨, 等. 楔橫軋空心件穩定軋制條件分析. 北京科技大學學報, 2001, 23(2): 155 doi: 10.3321/j.issn:1001-053X.2001.02.017 [3] Urankar S, Lovell M, Morrow C, et al. Establishment of failure conditions for the cross-wedge rolling of hollow shafts. J Mater Process Technol, 2006, 177(1-3): 545 doi: 10.1016/j.jmatprotec.2006.04.052 [4] Huang H B, Zhang T, Shu X D. Theoretical modeling for deflection angle of multi-wedges-synchrostep cross-wedge-rolling for hollow axle. J Syst Simul, 2014, 26(4): 774 https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201404010.htm黃海波, 張挺, 束學道. 楔橫軋多楔軋制大型空心車軸的偏轉角算法. 系統仿真學報, 2014, 26(4): 774 https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201404010.htm [5] Bartnicki J, Pater Z. Numerical simulation of three-rolls crosswedge rolling of hollowed shaft. J Mater Process Technol, 2005, 164-165: 1154 doi: 10.1016/j.jmatprotec.2005.02.120 [6] Ding W, Yang C P, Zhang K S, et al. Thermomechanical coupled numerical simulation on cross wedge rolling of hollow shaft parts with equal inner diameter. J Univ Sci Technol Beijing, 2010, 32(4): 525 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201004023.htm丁韡, 楊翠蘋, 張康生, 等. 楔橫軋等內徑空心軸的熱力耦合數值模擬. 北京科技大學學報, 2010, 32(4): 525 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201004023.htm [7] Yang C P, Zhang K S, Hu Z H. Numerical simulation study on the cause of ellipse generation in two-roll cross wedge rolling the hollow parts with uniform inner diameter. J Univ Sci Technol Beijing, 2012, 34(12): 1426 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201212012.htm楊翠蘋, 張康生, 胡正寰. 兩輥楔橫軋等內徑空心軸產生橢圓原因的數值模擬研究. 北京科技大學學報, 2012, 34(12): 1426 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201212012.htm [8] Xu G, Wang L N, Li S Q, et al. Hot deformation behavior of EA4T steel. Acta Metall Sin (Engl Lett), 2012, 25(5): 374 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JSXY201205007 [9] Zheng S H, Shu X D, Sun B S, et al. Wall thickness uniformity of railway hollow shafts by cross-wedge rolling. Chin J Eng, 2015, 37(5): 648 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201505017.htm鄭書華, 束學道, 孫寶壽, 等. 楔橫軋多楔軋制高鐵空心車軸壁厚均勻性. 工程科學學報, 2015, 37(5): 648 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201505017.htm [10] Ji H C, Liu J P, Wang B Y, et al. Cross-wedge rolling of a 4Cr9Si2 hollow valve: explorative experiment and finite element simulation. Int J Adv Manuf Technol, 2015, 77(1-4): 15 doi: 10.1007/s00170-014-6363-9 [11] Ji H C, Liu J P, Wang B Y, et al. A new method for manufacturing hollow valves via cross wedge rolling and forging: numerical analysis and experiment validation. J Mater Process Technol, 2017, 240: 1 doi: 10.1016/j.jmatprotec.2016.09.004 [12] Yang C P, Hu Z H. Research on the ovality of hollow shafts in cross wedge rolling with mandrel. Int J Adv Manuf Technol, 2016, 83(1-4): 67 doi: 10.1007/s00170-015-7478-3 [13] Yang C P, Ma J W, Hu Z H. Analysis and design of cross wedge rolling hollow axle sleeve with mandrel. J Mater Process Technol, 2017, 239: 346 doi: 10.1016/j.jmatprotec.2016.09.002 [14] Yang C P, Hu Z H. Influence of the flattening deformation on the forming of hollow parts in cross-wedge rolling. Trans Beijing Inst Technol, 2014, 34(9): 881 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201409001.htm楊翠蘋, 胡正寰. 楔橫軋空心件壓扁變形對成形的影響. 北京理工大學學報, 2014, 34(9): 881 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201409001.htm [15] Jiang Y, Wang B Y, Hu Z H, et al. The effect of process parameter on non-circularity of thick-walled hollow axle during cross wedge rolling. J Plast Eng, 2012, 19(1): 21 doi: 10.3969/j.issn.1007-2012.2012.01.005江洋, 王寶雨, 胡正寰, 等. 工藝參數對楔橫軋厚壁空心軸不圓度的影響. 塑性工程學報, 2012, 19(1): 21 doi: 10.3969/j.issn.1007-2012.2012.01.005 [16] Jiang Y, Wang B Y. Effect of mandrel on forming quality and rolling force of cross wedge rolling for thick-wall hollow axle. J Plast Eng, 2012, 19(6): 19 doi: 10.3969/j.issn.1007-2012.2012.06.004江洋, 王寶雨. 芯棒對楔橫軋厚壁空心軸成形質量及軋制力的影響. 塑性工程學報, 2012, 19(6): 19 doi: 10.3969/j.issn.1007-2012.2012.06.004 -