<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于管道流體信號的自振射流特性檢測方法

蔡騰飛 潘巖 馬飛 崔立華 邱林賓

蔡騰飛, 潘巖, 馬飛, 崔立華, 邱林賓. 基于管道流體信號的自振射流特性檢測方法[J]. 工程科學學報, 2019, 41(3): 377-383. doi: 10.13374/j.issn2095-9389.2019.03.011
引用本文: 蔡騰飛, 潘巖, 馬飛, 崔立華, 邱林賓. 基于管道流體信號的自振射流特性檢測方法[J]. 工程科學學報, 2019, 41(3): 377-383. doi: 10.13374/j.issn2095-9389.2019.03.011
CAI Teng-fei, PAN Yan, MA Fei, CUI Li-hua, QIU Lin-bin. Detection method of the self-resonating waterjet characteristic based on the flow signal in a pipeline[J]. Chinese Journal of Engineering, 2019, 41(3): 377-383. doi: 10.13374/j.issn2095-9389.2019.03.011
Citation: CAI Teng-fei, PAN Yan, MA Fei, CUI Li-hua, QIU Lin-bin. Detection method of the self-resonating waterjet characteristic based on the flow signal in a pipeline[J]. Chinese Journal of Engineering, 2019, 41(3): 377-383. doi: 10.13374/j.issn2095-9389.2019.03.011

基于管道流體信號的自振射流特性檢測方法

doi: 10.13374/j.issn2095-9389.2019.03.011
基金項目: 

國家自然科學基金資助項目 51274021

國家自然科學基金資助項目 51774019

國家“十二五”資助項目 DY125-14-T-03

詳細信息
    通訊作者:

    馬飛, E-mail: yeke@ustb.edu.cn

  • 中圖分類號: TG142.71

Detection method of the self-resonating waterjet characteristic based on the flow signal in a pipeline

More Information
  • 摘要: 提出基于管道流體信號的自振射流特性檢測方法, 將壓力傳感器從高壓罐內移至高壓罐外, 布置在高壓罐外的前端管路上, 從而避開高圍壓環境影響; 通過雙壓力傳感器拾取管道流體壓力脈動信號, 并運用信號處理技術有效抑制干擾噪聲, 提高有用信號強度, 準確獲取射流的壓力脈動信息.試驗表明, 管道流體壓力信號的頻譜特征與噴嘴腔內檢測法具有一致性, 且與理論計算較為吻合, 充分表征了射流的壓力振蕩特性; 其聲功率譜與高壓罐內水聽器檢測結果相一致, 較好地表述了射流的空化作用特性.由此認為基于管道流體信號的檢測法用于自振射流特性的檢測是完全可行的, 具有先進性, 為高圍壓下自振射流的研究提供了新手段.

     

  • 圖  1  試驗裝置

    1—水箱; 2—高壓泵; 3—高頻壓力傳感器A; 4—壓力表; 5—流量計; 6—高頻壓力傳感器B; 7—水聽器; 8—壓力傳感器; 9—高頻壓力傳感器C; 10—風琴管噴嘴; 11—高壓罐; 12—靶盤; 13—數據采集器; 14—計算機; 15—伺服電機; 16—溢流閥; 17—控制臺

    Figure  1.  Schematic diagram of the test setup

    圖  2  風琴管噴嘴結構

    Figure  2.  Organ-pipe nozzle structure

    圖  3  壓力信號時域波形(a) 及局部放大的時域波形(b)

    Figure  3.  Time-domain waveform of the pressure signal (a) and the locally amplified time-domain waveform (b)

    圖  4  壓力信號頻譜. (a) 測點2頻譜; (b) 測點4頻譜; (c) 測點2低頻部分頻譜; (d) 測點1頻譜

    Figure  4.  Spectra of the pressure signal: (a) spectrum at point 2; (b) spectrum at point 4; (c) low frequency spectrum at point 2; (d) spectrum at point 1

    圖  5  功率譜密度圖. (a) 測點3水聽器信號; (b) 測點2壓力信號

    Figure  5.  Power spectral density: (a) hydrophone signal at point 3; (b) pressure signal at point 2

    圖  6  壓力信號相關分析波形. (a) 自相關波形; (b) 局部放大的自相關波形; (c) 互相關波形; (d) 局部放大的互相關波形

    Figure  6.  Correlation analysis waveform of the pressure signal: (a) auto-correlation waveform; (b) locally amplified auto-correlation waveform; (c) cross correlation waveform; (d) locally amplified cross correlation waveform

    圖  7  濾波結果. (a) 濾波后時域波形; (b) 濾波后局部放大的時域波形; (c) 濾波后測點2頻譜; (d) 濾波后測點2低頻部分頻譜

    Figure  7.  Filtering results: (a) filtered time-domain waveform; (b) locally amplified filtered time-domain waveform; (c) filtered spectrum at point 2; (d) filtered low frequency spectrum at point 2

    表  1  噴嘴結構參數及固有頻率

    Table  1.   Organ-pipe nozzle structure and natural frequency

    Ds/mm D/mm d/mm L/mm f/kHz
    23 10 2 24 14.9
    下載: 導出CSV

    表  2  試驗參數及自激頻率

    Table  2.   Test parameters and self-resonating frequency

    v/(m·s-1) a/(m·s-1) fp/Hz Sd fj/kHz
    165 1450 6.98 0.12~0.2 9.9~16.5
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Yi C, Li G S, Zhang D G. Laboratory and field study of enhancing cavitation effect with self-resonating nozzle under ambient pressure. Chin J Mech Eng, 2005, 41(6): 218 doi: 10.3321/j.issn:0577-6686.2005.06.042

    易燦, 李根生, 張定國. 圍壓下自振噴嘴空化起始能力試驗及應用研究. 機械工程學報, 2005, 41(6): 218 doi: 10.3321/j.issn:0577-6686.2005.06.042
    [2] Liu Y C, Cheng H J, Peng L Z, et al. Computer simulation on jetpump lifting system of ocean mining. J Univ Sci Technol Beijing, 1996, 18(3): 259 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD603.018.htm

    劉永才, 程火金, 彭龍洲, 等. 大洋采礦射流泵揚礦系統計算機仿真計算. 北京科技大學學報, 1996, 18(3): 259 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD603.018.htm
    [3] Wang R H, Du Y K, Ni H J, et al. Hydrodynamic analysis of suck-in pulsed jet in well drilling. J Hydrodyn, 2011, 23(1): 34 doi: 10.1016/S1001-6058(10)60085-6
    [4] Li G S, Shen Z H, Zhou C S, et al. Investigation and application of self-resonating cavitating water jet in petroleum engineering. Petrol Sci Technol, 2005, 23(1): 1 doi: 10.1081/LFT-20009686218
    [5] Hu D, Li X H, Tang C L, et al. Analytical and experimental investigations of the pulsed air-water jet. J Fluids Struct, 2015, 54: 88 doi: 10.1016/j.jfluidstructs.2014.10.010
    [6] Wang P H, Ma F. Vibration analysis experiment of self-resonating cavitating water jet. J Mech Eng, 2009, 45(10): 89 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200910023.htm

    王萍輝, 馬飛. 自激振動空化射流振動分析試驗. 機械工程學報, 2009, 45(10): 89 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200910023.htm
    [7] Li D, Li X H, Kang Y, et al. Experimental investigation on the influence of internal surface roughness of organ pipe nozzle on the characteristics of high pressure jet. J Mech Eng, 2015, 51(17): 169 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201517022.htm

    李登, 李曉紅, 康勇, 等. 風琴管噴嘴內表面粗糙度對高壓射流特性的影響試驗研究. 機械工程學報, 2015, 51(17): 169 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201517022.htm
    [8] Tang C L, Wang X M, Hu D, et al. Influence of special-outlet self-exciting oscillation pulsed nozzle on oscillation frequency. Min Process Equip, 2015, 43(1): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201501006.htm

    唐川林, 王曉明, 胡東, 等. 自振脈沖噴嘴中異形結構對射流振蕩頻率的影響. 礦山機械, 2015, 43(1): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201501006.htm
    [9] Ma F, Cai T F, Liu J, et al. Experimental study of self-resonating water jet frequency characteristics. J Mech Eng, 2016, 52(14): 182 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201614020.htm

    馬飛, 蔡騰飛, 柳靖, 等. 自振射流頻率特性的試驗研究. 機械工程學報, 2016, 52(14): 182 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201614020.htm
    [10] Xu P P, Liu J, Ma F, et al. Analysis methods forflow pressure signals in oscillation cavity of a self-resonating jet nozzle. J Vib Shock, 2015, 34(17): 180 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201517031.htm

    徐平平, 柳靖, 馬飛, 等. 自振射流噴嘴腔內壓力信號分析方法的研究. 振動與沖擊, 2015, 34(17): 180 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201517031.htm
    [11] Han J, Liu J, Wang H, et al. A new detection method of fluid pulsation inside the oscillation cavity of a self-resonating water jet nozzle. Chin J Eng, 2015, 37(9): 1191 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201509012.htm

    韓健, 柳靖, 汪暉, 等. 自振射流噴嘴振蕩腔內信號檢測方法. 工程科學學報, 2015, 37(9): 1191 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201509012.htm
    [12] Chahine G L, Johnson V E, Lindenmuth W T, et al. The use of self-resonating cavitating water jets for underwater sound generation. J Acoust Soc Am, 1985, 77(1): 113 doi: 10.1121/1.392274
    [13] Blevins R D. Flow-Induced Vibration. New York: Van Nostrand Reinhold, 1990
    [14] Zhang F H, Liu H F, Xu J C, et al. Experimental investigation on noise of cavitation nozzle and its chaotic behavior. Chin J Mech Eng, 2013, 26(4): 758 doi: 10.3901/CJME.2013.04.758
  • 加載中
圖(7) / 表(2)
計量
  • 文章訪問數:  793
  • HTML全文瀏覽量:  302
  • PDF下載量:  15
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-04-04
  • 刊出日期:  2019-03-20

目錄

    /

    返回文章
    返回