-
摘要: 利用同步熱跟蹤原理, 提供一種測定微量氣液反應熱的研究方法.通過程序控制容器外殼溫度與內部溶液同步升溫, 減小溫度梯度, 形成“熱屏障”, 阻止溶液以熱傳導、對流、輻射的形式與外界環境進行熱交換, 獲得動態絕熱環境, 提高微量氣液反應熱直接測量的精度, 減少樣品用量, 無需熱補償.采用MEA (乙醇胺) 與MDEA (N-甲基二乙醇胺) 兩類弱堿吸收液, 容積為15 mL, 分別在10%、20%、30%、40%和50%質量分數下, 測定吸收CO2的反應熱.實驗表明: 同步熱跟蹤法測量更為準確; 隨溶液濃度的增加, MEA反應熱先降低后升高, MDEA反應熱逐漸降低; 在質量分數為20%~40%時, MEA、MDEA質量分數對反應熱的影響不顯著; 反應放熱形成的升溫曲線出現“下凹”現象.Abstract: In the process of CO2 capture by chemical absorption, regeneration energy consumption accounts for 70%-80% of the total energy consumption. Currently, the most critical issue is how to reduce the energy consumption of regeneration. Equipment such as micro-reaction calorimeter (Thermal Hazard Technology provides), differential reaction calorimeter and Setaram C80 thermal differential calorimeter is used to compare the reference and sample solutions, which are simultaneously heated to compensate for heat loss of the sample solution during the measurement, but the heat of reaction cannot be directly measured. In this study, the reaction heats of MEA (ethanolamine) and MDEA (N-methyldiethanolamine) with CO2 at 10%, 20%, 30%, 40%, and 50% mass fraction were measured by synchronous thermal tracing technique. By synchronously controlling the temperature of the shell of the container and the internal solution, the temperature gradient was reduced to form a "thermal barrier"to prevent the solution from exchanging heat with the external environment in the form of conduction, convection, or radiation. A dynamic adiabatic environment was obtained without thermal compensation. The accuracy of direct measurement of the trace gas-liquid reaction heat was improved to save the sample amount. The experimental results show that the simultaneous thermal tracking method is more accurate. With the increase of solution concentration, the reaction heat of MEA first decreases and then increases, and the reaction heat of MDEA decreases gradually. When the mass concentration of MEA and MDEA is between 20% and 40%, the mass concentration has no significant effect on the reaction heat. The curve of temperature rise formed by exothermic reaction appears to be concave.
-
Key words:
- synchronous thermal tracking /
- trace reaction heat /
- absorption /
- chemical reactor
-
圖 2 氣液反應熱及液體比熱容測量裝置圖
1—CO2氣瓶; 2—減壓閥; 3—進氣質量流量傳感器; 4—集熱式攪拌器; 5—進氣管; 6—溫度變送器; 7、10—熱電偶; 8—球形網狀材料; 9—保溫材料; 11—加熱絲; 12、14—玻璃容器; 13—加熱體; 15—蜂窩狀多孔材料; 16—磁力攪拌子; 17—支撐圓錐體; 18—磁力攪拌器; 19—出氣管; 20—干燥管; 21—出氣質量流量傳感器; 22—上位計算機; 23—數采控制器; 24—功率表
Figure 2. Schematic of gas-liquid reaction heat and liquid specific heat capacity measurement device
圖 3 15 mL質量分數30%的MEA溶液的相關實驗曲線. (a) 測定溶液比熱容實驗中的升溫曲線與氣液反應過程中的升溫曲線; (b) 在測定溶液比熱容的實驗中的升溫曲線與加熱功率曲線
Figure 3. Experimental curves of 15 mL 30%MEA solution: (a) the rising curves of specific heat capacity and gas-liquid reaction measurement; (b) the rising temperature curve and heating power curve for the determination of solution specific heat capacity
表 1 不同質量分數醇胺溶液比熱容及反應熱計算結果
Table 1. Values of specific heat capacity and reaction heat for different concentrations of alcohol amine solution
溶液種類 質量分數/% 溫度區間/℃ 比熱容/
(kJ·kg-1·℃-1)比熱容置信區間/
(kJ·kg-1·℃-1)-ΔHabs/
(kJ·mol-1)反應熱置信區間/
(kJ·mol-1)MEA 10 19.5~20.5 3.33 (3.33-0.09,3.33+0.09) 90.46 (90.46-13.45,90.46+13.45) 20 19.5~20.5 3.61 (3.61-0.10,3.61+0.10) 80.16 (80.26-5,91,80.26+5.91) 30 19.5~20.5 3.72 (3.72-0.10,3.72+0.10) 73.12 (73.12-4.06,73.12+4.06) 40 19.5~20.5 3.87 (3.87-0.10,3.87+0.10) 73.42 (73.42-8.18,73.42+8.18) 50 19.5~20.5 3.95 (3.95-0.14,3.95+0.14) 77.60 (77.60-9.23,77.60+9.23) MDEA 10 19.5~20.5 3.76 (3.76-0.16,3.76+0.16) 40.62 (40.62-12.53,40.62-12.53) 20 19.5~20.5 3.81 (3.81-0.16,3.81+0.16) 30.45 (30.45-8.94,30.45+8.94) 30 19.5~20.5 3.60 (3.60-0.13,3.60+0.13) 29.30 (29.30-8.65,29.30+8.65) 40 19.5~20.5 3.34 (3.34-0.18,3.34+0.18) 26.59 (26.59-9.17,26.59+9.17) 50 19.5~20.5 3.38 (3.38-0.20,3.38+0.20) 14.92 (14.92-11.28,14.92+11.28) 259luxu-164 -
參考文獻
[1] Du M, Zhang L, Feng B. Effect of pH controlling method on energy consumption of CO2 desorption from rsch-solvent. J Chongqing Univ, 2010, 33(8): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201008024.htm杜敏, 張力, 馮波. pH值調節劑對CO2吸收富液解吸能耗的影響. 重慶大學學報, 2010, 33(8): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201008024.htm [2] Qin F, Wang S J, Svendsen H F, et al. Research on heat requirement of aqua ammonia regeneration for CO2 capture. CIESC J, 2010, 61(5): 1233 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201005025.htm秦鋒, 王淑娟, Svendsen H F, 等. 氨法脫碳系統再生能耗的研究. 化工學報, 2010, 61(5): 1233 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201005025.htm [3] Zhang K F, Liu Z L, Wang Y Y, et al. Analysis and calculation of the desorption energy consumption of CO2 capture process by chemical absorption method. Chem Ind Eng Prog, 2013, 32(12): 3008 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201312044.htm張克舫, 劉中良, 王遠亞, 等. 化學吸收法CO2捕集解吸能耗的分析計算. 化工進展, 2013, 32(12): 3008 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201312044.htm [4] Ahmady A, Hashim M A, Aroua M K. Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilib, 2011, 309(1): 76 doi: 10.1016/j.fluid.2011.06.029 [5] Zhang F, Ma J W, Zhou Z, et al. Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions. Chem Eng J, 2012, 181-182: 222 doi: 10.1016/j.cej.2011.11.066 [6] Arcis H, Rodier L, Ballerat-Busserolles K, et al. Modeling of (vapor + liquid) equilibrium and enthalpy of solution of carbon dioxide (CO2) in aqueous methyldiethanolamine (MDEA) solutions. J Chem Thermodyn, 2009, 41(6): 783 doi: 10.1016/j.jct.2009.01.005 [7] ?i L E, Lundberg J, Pedersen M, et al. Measurements of CO2 absorption and heat consumption in laboratory rig. Energy Procedia, 2014, 63: 1569 doi: 10.1016/j.egypro.2014.11.166 [8] Qi G J, Wang S J, Yu H, et al. Prediction model of absorption heat for CO2 capture using aqueous ammonia. CIESC J, 2013, 64(9): 3079 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201309000.htm齊國杰, 王淑娟, Yu Hai, 等. 氨水吸收CO2的吸收熱預測模型. 化工學報, 2013, 64(9): 3079 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201309000.htm [9] Liu B C, Shi C H, Li Q L, et al. Experimental investigation of performances and renewable energy consumption of absorbent DEA in CO2 capture system. Eng J Wuhan Univ, 2012, 45(6): 817 https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201206023.htm劉炳成, 史澄輝, 李慶領, 等. 電廠CO2捕集系統DEA化學吸收劑性能與能耗實驗研究. 武漢大學學報(工學版), 2012, 45(6): 81 https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201206023.htm [10] Chen J, Luo W L, Li H. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines. CIESC J, 2014, 65(1): 12 doi: 10.3969/j.issn.0438-1157.2014.01.002陳健, 羅偉亮, 李晗. 有機胺吸收二氧化碳的熱力學和動力學研究進展. 化工學報, 2014, 65(1): 12 doi: 10.3969/j.issn.0438-1157.2014.01.002 [11] Gupta M, Svendsen H F. Temperature dependent enthalpy of CO2 absorption for amines and amino acids from theoretical calculations at infinite dilution. Energy Procedia, 2014, 63: 1106 doi: 10.1016/j.egypro.2014.11.119 [12] Van Nierop E A, Hormoz S, House K Z, et al. Effect of absorption enthalpy on temperature-swing CO2 separation process performance. Energy Procedia, 2011, 4: 1783 doi: 10.1016/j.egypro.2011.02.054 [13] Liu J Z, Wang S J, Zhao B, et al. Absorption of carbon dioxide in aqueous ammonia. Energy Procedia, 2009, 1(1): 933 doi: 10.1016/j.egypro.2009.01.124 [14] Liu J Z, Wang S J, Qi G J, et al. Kinetics and mass transfer of carbon dioxide absorption into aqueous ammonia. Energy Procedia, 2011, 4: 525 doi: 10.1016/j.egypro.2011.01.084 [15] Srisang W, Pouryousefi F, Osei P A, et al. Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture. Chem Eng Sci, 2017, 170: 48 doi: 10.1016/j.ces.2017.01.049 [16] Abdulkadir A, Rayer A V, Quang D V, et al. Heat of absorption and specific heat of carbon dioxide in aqueous solutions of monoethanolamine, 3-piperidinemethanol and their blends. Energy Procedia, 2014, 63: 2070 doi: 10.1016/j.egypro.2014.11.223 [17] Xie Q, Aroonwilas A, Veawab A. Measurement of heat of CO2 absorption into 2-Amino-2-methyl-1-propanol (AMP)/piperazine (PZ) blends using differential reaction calorimeter. Energy Procedia, 2013, 37: 826 doi: 10.1016/j.egypro.2013.05.175 [18] Arcis H, Rodier L, Ballerat-Busserolles K, et al. Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=372.9 K and pressures up to 5 MPa. J Chem Thermodyn, 2009, 41(7): 836 doi: 10.1016/j.jct.2009.01.013 [19] Arcis H, Rodier L, Ballerat-Busserolles K, et al. Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=322.5 K and pressure up to 5 MPa. J Chem Thermodyn, 2008, 40(6): 1022 doi: 10.1016/j.jct.2008.01.028 [20] Arcis H, Rodier L, Coxam J Y. Enthalpy of solution of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol. J Chem Thermodyn, 2007, 39(6): 878 doi: 10.1016/j.jct.2006.11.011 [21] Kim I, Svendsen H F. Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(Aminoethyl) ethanolamine (AEEA) solutions. Ind Eng Chem Res, 2007, 46(17): 5803 doi: 10.1021/ie0616489 [22] Guo D F, Gao S W, Luo W L, et al. Effect of sulfolane on CO2 absorption and desorption by monethanolamine aqueous solution. CIESC J, 2016, 67(12): 5244 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201612041.htm郭東方, 郜時旺, 羅偉亮, 等. 環丁砜對乙醇胺溶液吸收和解吸CO2的影響. 化工學報, 2016, 67(12): 5244 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201612041.htm [23] Svensson H, Hulteberg C, Karlsson H T. Heat of absorption of CO2 in aqueous solutions of N-methyldiethanolamine and piperazine. Int J Greenhouse Gas Control, 2013, 17: 89 doi: 10.1016/j.ijggc.2013.04.021 [24] Kim I, Hoff K A, Hessen E T, et al. Enthalpy of absorption of CO2 with alkanolamine solutions predicted from reaction equilibrium constants. Chem Eng Sci, 2009, 64(9): 2027 doi: 10.1016/j.ces.2008.12.037 [25] Arcis H, Ballerat-Busserolles K, Rodier L, et al. Measurement and modeling of enthalpy of solution of carbon dioxide in aqueous solutions of diethanolamine at temperatures of (322.5 and 372.9) K and pressures up to 3 MPa. J Chem Eng Data, 2012, 57(3): 840 doi: 10.1021/je201012e [26] Wang X N. Design and implementation of constant temperature control software based on improved PID. Comput Simul, 2015, 32(4): 371 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201504082.htm王曉娜. 基于改進PID的恒溫控制軟件設計與實現. 計算機仿真, 2015, 32(4): 371 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201504082.htm [27] Li J, Gu J J. Development of tuning methods for PID parameters. Inform Electr Power, 2001(3): 11 doi: 10.3969/j.issn.1672-0792.2001.03.004李劍, 谷俊杰. PID參數整定方法進展. 電力情報, 2001(3): 11 doi: 10.3969/j.issn.1672-0792.2001.03.004 [28] Yang Z Y, Guan Y C, Zhao S W. Temperature controller design based on self-tuning PID. Shandong Ind Technol, 2017(3): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201703003.htm楊振元, 關艷翠, 趙碩偉. 基于自整定PID的溫度控制器設計. 山東工業技術, 2017(3): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201703003.htm [29] Mathonat C, Majer V, Mather A E, et al. Use of flow calorimetry for determining enthalpies of absorption and the solubility of CO2 in aqueous monoethanolamine solutions. Ind Eng Chem Res, 1998, 37(10): 4136 doi: 10.1021/ie9707679 [30] Kim I, Svendsen H F. Comparative study of the heats of absorption of post-combustion CO2 absorbents. Int J Greenhouse Gas Control, 2011, 5(3): 390 doi: 10.1016/j.ijggc.2010.05.003 [31] Kim I, Hoff K A, Mejdell T. Heat of absorption of CO2 with aqueous solutions of MEA: new experimental data. Energy Procedia, 2014, 63: 1446 doi: 10.1016/j.egypro.2014.11.154 -