<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于同步熱跟蹤法的微量氣液反應熱測量

張宣凱 張輝 李東 劉應書 張會元 王潤 郭亞樓

張宣凱, 張輝, 李東, 劉應書, 張會元, 王潤, 郭亞樓. 基于同步熱跟蹤法的微量氣液反應熱測量[J]. 工程科學學報, 2019, 41(3): 368-376. doi: 10.13374/j.issn2095-9389.2019.03.010
引用本文: 張宣凱, 張輝, 李東, 劉應書, 張會元, 王潤, 郭亞樓. 基于同步熱跟蹤法的微量氣液反應熱測量[J]. 工程科學學報, 2019, 41(3): 368-376. doi: 10.13374/j.issn2095-9389.2019.03.010
ZHANG Xuan-kai, ZHANG Hui, LI Dong, LIU Ying-shu, ZHANG Hui-yuan, WANG Run, GUO Ya-lou. Measurement of gas-liquid reaction heat based on synchronous thermal tracking[J]. Chinese Journal of Engineering, 2019, 41(3): 368-376. doi: 10.13374/j.issn2095-9389.2019.03.010
Citation: ZHANG Xuan-kai, ZHANG Hui, LI Dong, LIU Ying-shu, ZHANG Hui-yuan, WANG Run, GUO Ya-lou. Measurement of gas-liquid reaction heat based on synchronous thermal tracking[J]. Chinese Journal of Engineering, 2019, 41(3): 368-376. doi: 10.13374/j.issn2095-9389.2019.03.010

基于同步熱跟蹤法的微量氣液反應熱測量

doi: 10.13374/j.issn2095-9389.2019.03.010
基金項目: 

北京市科委項目基金資助項目 D161100006016001

詳細信息
    通訊作者:

    張輝, E-mail: zhanghui56@ustb.edu.cn

  • 中圖分類號: TK11+3

Measurement of gas-liquid reaction heat based on synchronous thermal tracking

More Information
  • 摘要: 利用同步熱跟蹤原理, 提供一種測定微量氣液反應熱的研究方法.通過程序控制容器外殼溫度與內部溶液同步升溫, 減小溫度梯度, 形成“熱屏障”, 阻止溶液以熱傳導、對流、輻射的形式與外界環境進行熱交換, 獲得動態絕熱環境, 提高微量氣液反應熱直接測量的精度, 減少樣品用量, 無需熱補償.采用MEA (乙醇胺) 與MDEA (N-甲基二乙醇胺) 兩類弱堿吸收液, 容積為15 mL, 分別在10%、20%、30%、40%和50%質量分數下, 測定吸收CO2的反應熱.實驗表明: 同步熱跟蹤法測量更為準確; 隨溶液濃度的增加, MEA反應熱先降低后升高, MDEA反應熱逐漸降低; 在質量分數為20%~40%時, MEA、MDEA質量分數對反應熱的影響不顯著; 反應放熱形成的升溫曲線出現“下凹”現象.

     

  • 圖  1  氣液反應熱測量實驗流程圖

    Figure  1.  Flow chart of gas-liquid reaction heat measurement

    圖  2  氣液反應熱及液體比熱容測量裝置圖

    1—CO2氣瓶; 2—減壓閥; 3—進氣質量流量傳感器; 4—集熱式攪拌器; 5—進氣管; 6—溫度變送器; 7、10—熱電偶; 8—球形網狀材料; 9—保溫材料; 11—加熱絲; 12、14—玻璃容器; 13—加熱體; 15—蜂窩狀多孔材料; 16—磁力攪拌子; 17—支撐圓錐體; 18—磁力攪拌器; 19—出氣管; 20—干燥管; 21—出氣質量流量傳感器; 22—上位計算機; 23—數采控制器; 24—功率表

    Figure  2.  Schematic of gas-liquid reaction heat and liquid specific heat capacity measurement device

    圖  3  15 mL質量分數30%的MEA溶液的相關實驗曲線. (a) 測定溶液比熱容實驗中的升溫曲線與氣液反應過程中的升溫曲線; (b) 在測定溶液比熱容的實驗中的升溫曲線與加熱功率曲線

    Figure  3.  Experimental curves of 15 mL 30%MEA solution: (a) the rising curves of specific heat capacity and gas-liquid reaction measurement; (b) the rising temperature curve and heating power curve for the determination of solution specific heat capacity

    圖  4  質量分數30%的MEA溶液吸收CO2時, 不同溫度T下的反應熱文獻值、擬合值與實驗值對比

    Figure  4.  Literature value, fitted value, and experimental value of dif-ferent temperatures of 30%MEA solution with absorbed CO2

    圖  5  15 mL質量分數30%的MEA溶液溫度T曲線及進氣、出氣流量曲線. (a) 非同步熱跟蹤; (b) 同步熱跟蹤; (c) 溫度T曲線對比

    Figure  5.  Temperature curves, inlet and outlet flow curves for 15 mL 30%MEA solution: (a) non-synchronous thermal tracking; (b) synchronous thermal tracking; (c) comparison of the temperature curves

    圖  6  不同質量分數MEA、MDEA溶液反應熱對比

    Figure  6.  Reaction heats at different mass fractions of MEA and MDEA solutions

    圖  7  15 mL質量分數30%的MEA與MDEA溶液吸收CO2反應過程中的升溫曲線對比

    Figure  7.  Comparison of the heating curves of 15 mL 30%MEA/MDEA solution in gas-liquid reaction

    表  1  不同質量分數醇胺溶液比熱容及反應熱計算結果

    Table  1.   Values of specific heat capacity and reaction heat for different concentrations of alcohol amine solution

    溶液種類 質量分數/% 溫度區間/℃ 比熱容/
    (kJ·kg-1·℃-1)
    比熱容置信區間/
    (kJ·kg-1·℃-1)
    Habs/
    (kJ·mol-1)
    反應熱置信區間/
    (kJ·mol-1)
    MEA 10 19.5~20.5 3.33 (3.33-0.09,3.33+0.09) 90.46 (90.46-13.45,90.46+13.45)
    20 19.5~20.5 3.61 (3.61-0.10,3.61+0.10) 80.16 (80.26-5,91,80.26+5.91)
    30 19.5~20.5 3.72 (3.72-0.10,3.72+0.10) 73.12 (73.12-4.06,73.12+4.06)
    40 19.5~20.5 3.87 (3.87-0.10,3.87+0.10) 73.42 (73.42-8.18,73.42+8.18)
    50 19.5~20.5 3.95 (3.95-0.14,3.95+0.14) 77.60 (77.60-9.23,77.60+9.23)
    MDEA 10 19.5~20.5 3.76 (3.76-0.16,3.76+0.16) 40.62 (40.62-12.53,40.62-12.53)
    20 19.5~20.5 3.81 (3.81-0.16,3.81+0.16) 30.45 (30.45-8.94,30.45+8.94)
    30 19.5~20.5 3.60 (3.60-0.13,3.60+0.13) 29.30 (29.30-8.65,29.30+8.65)
    40 19.5~20.5 3.34 (3.34-0.18,3.34+0.18) 26.59 (26.59-9.17,26.59+9.17)
    50 19.5~20.5 3.38 (3.38-0.20,3.38+0.20) 14.92 (14.92-11.28,14.92+11.28)
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Du M, Zhang L, Feng B. Effect of pH controlling method on energy consumption of CO2 desorption from rsch-solvent. J Chongqing Univ, 2010, 33(8): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201008024.htm

    杜敏, 張力, 馮波. pH值調節劑對CO2吸收富液解吸能耗的影響. 重慶大學學報, 2010, 33(8): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201008024.htm
    [2] Qin F, Wang S J, Svendsen H F, et al. Research on heat requirement of aqua ammonia regeneration for CO2 capture. CIESC J, 2010, 61(5): 1233 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201005025.htm

    秦鋒, 王淑娟, Svendsen H F, 等. 氨法脫碳系統再生能耗的研究. 化工學報, 2010, 61(5): 1233 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201005025.htm
    [3] Zhang K F, Liu Z L, Wang Y Y, et al. Analysis and calculation of the desorption energy consumption of CO2 capture process by chemical absorption method. Chem Ind Eng Prog, 2013, 32(12): 3008 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201312044.htm

    張克舫, 劉中良, 王遠亞, 等. 化學吸收法CO2捕集解吸能耗的分析計算. 化工進展, 2013, 32(12): 3008 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201312044.htm
    [4] Ahmady A, Hashim M A, Aroua M K. Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilib, 2011, 309(1): 76 doi: 10.1016/j.fluid.2011.06.029
    [5] Zhang F, Ma J W, Zhou Z, et al. Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions. Chem Eng J, 2012, 181-182: 222 doi: 10.1016/j.cej.2011.11.066
    [6] Arcis H, Rodier L, Ballerat-Busserolles K, et al. Modeling of (vapor + liquid) equilibrium and enthalpy of solution of carbon dioxide (CO2) in aqueous methyldiethanolamine (MDEA) solutions. J Chem Thermodyn, 2009, 41(6): 783 doi: 10.1016/j.jct.2009.01.005
    [7] ?i L E, Lundberg J, Pedersen M, et al. Measurements of CO2 absorption and heat consumption in laboratory rig. Energy Procedia, 2014, 63: 1569 doi: 10.1016/j.egypro.2014.11.166
    [8] Qi G J, Wang S J, Yu H, et al. Prediction model of absorption heat for CO2 capture using aqueous ammonia. CIESC J, 2013, 64(9): 3079 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201309000.htm

    齊國杰, 王淑娟, Yu Hai, 等. 氨水吸收CO2的吸收熱預測模型. 化工學報, 2013, 64(9): 3079 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201309000.htm
    [9] Liu B C, Shi C H, Li Q L, et al. Experimental investigation of performances and renewable energy consumption of absorbent DEA in CO2 capture system. Eng J Wuhan Univ, 2012, 45(6): 817 https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201206023.htm

    劉炳成, 史澄輝, 李慶領, 等. 電廠CO2捕集系統DEA化學吸收劑性能與能耗實驗研究. 武漢大學學報(工學版), 2012, 45(6): 81 https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201206023.htm
    [10] Chen J, Luo W L, Li H. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines. CIESC J, 2014, 65(1): 12 doi: 10.3969/j.issn.0438-1157.2014.01.002

    陳健, 羅偉亮, 李晗. 有機胺吸收二氧化碳的熱力學和動力學研究進展. 化工學報, 2014, 65(1): 12 doi: 10.3969/j.issn.0438-1157.2014.01.002
    [11] Gupta M, Svendsen H F. Temperature dependent enthalpy of CO2 absorption for amines and amino acids from theoretical calculations at infinite dilution. Energy Procedia, 2014, 63: 1106 doi: 10.1016/j.egypro.2014.11.119
    [12] Van Nierop E A, Hormoz S, House K Z, et al. Effect of absorption enthalpy on temperature-swing CO2 separation process performance. Energy Procedia, 2011, 4: 1783 doi: 10.1016/j.egypro.2011.02.054
    [13] Liu J Z, Wang S J, Zhao B, et al. Absorption of carbon dioxide in aqueous ammonia. Energy Procedia, 2009, 1(1): 933 doi: 10.1016/j.egypro.2009.01.124
    [14] Liu J Z, Wang S J, Qi G J, et al. Kinetics and mass transfer of carbon dioxide absorption into aqueous ammonia. Energy Procedia, 2011, 4: 525 doi: 10.1016/j.egypro.2011.01.084
    [15] Srisang W, Pouryousefi F, Osei P A, et al. Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture. Chem Eng Sci, 2017, 170: 48 doi: 10.1016/j.ces.2017.01.049
    [16] Abdulkadir A, Rayer A V, Quang D V, et al. Heat of absorption and specific heat of carbon dioxide in aqueous solutions of monoethanolamine, 3-piperidinemethanol and their blends. Energy Procedia, 2014, 63: 2070 doi: 10.1016/j.egypro.2014.11.223
    [17] Xie Q, Aroonwilas A, Veawab A. Measurement of heat of CO2 absorption into 2-Amino-2-methyl-1-propanol (AMP)/piperazine (PZ) blends using differential reaction calorimeter. Energy Procedia, 2013, 37: 826 doi: 10.1016/j.egypro.2013.05.175
    [18] Arcis H, Rodier L, Ballerat-Busserolles K, et al. Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=372.9 K and pressures up to 5 MPa. J Chem Thermodyn, 2009, 41(7): 836 doi: 10.1016/j.jct.2009.01.013
    [19] Arcis H, Rodier L, Ballerat-Busserolles K, et al. Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=322.5 K and pressure up to 5 MPa. J Chem Thermodyn, 2008, 40(6): 1022 doi: 10.1016/j.jct.2008.01.028
    [20] Arcis H, Rodier L, Coxam J Y. Enthalpy of solution of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol. J Chem Thermodyn, 2007, 39(6): 878 doi: 10.1016/j.jct.2006.11.011
    [21] Kim I, Svendsen H F. Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(Aminoethyl) ethanolamine (AEEA) solutions. Ind Eng Chem Res, 2007, 46(17): 5803 doi: 10.1021/ie0616489
    [22] Guo D F, Gao S W, Luo W L, et al. Effect of sulfolane on CO2 absorption and desorption by monethanolamine aqueous solution. CIESC J, 2016, 67(12): 5244 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201612041.htm

    郭東方, 郜時旺, 羅偉亮, 等. 環丁砜對乙醇胺溶液吸收和解吸CO2的影響. 化工學報, 2016, 67(12): 5244 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201612041.htm
    [23] Svensson H, Hulteberg C, Karlsson H T. Heat of absorption of CO2 in aqueous solutions of N-methyldiethanolamine and piperazine. Int J Greenhouse Gas Control, 2013, 17: 89 doi: 10.1016/j.ijggc.2013.04.021
    [24] Kim I, Hoff K A, Hessen E T, et al. Enthalpy of absorption of CO2 with alkanolamine solutions predicted from reaction equilibrium constants. Chem Eng Sci, 2009, 64(9): 2027 doi: 10.1016/j.ces.2008.12.037
    [25] Arcis H, Ballerat-Busserolles K, Rodier L, et al. Measurement and modeling of enthalpy of solution of carbon dioxide in aqueous solutions of diethanolamine at temperatures of (322.5 and 372.9) K and pressures up to 3 MPa. J Chem Eng Data, 2012, 57(3): 840 doi: 10.1021/je201012e
    [26] Wang X N. Design and implementation of constant temperature control software based on improved PID. Comput Simul, 2015, 32(4): 371 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201504082.htm

    王曉娜. 基于改進PID的恒溫控制軟件設計與實現. 計算機仿真, 2015, 32(4): 371 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201504082.htm
    [27] Li J, Gu J J. Development of tuning methods for PID parameters. Inform Electr Power, 2001(3): 11 doi: 10.3969/j.issn.1672-0792.2001.03.004

    李劍, 谷俊杰. PID參數整定方法進展. 電力情報, 2001(3): 11 doi: 10.3969/j.issn.1672-0792.2001.03.004
    [28] Yang Z Y, Guan Y C, Zhao S W. Temperature controller design based on self-tuning PID. Shandong Ind Technol, 2017(3): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201703003.htm

    楊振元, 關艷翠, 趙碩偉. 基于自整定PID的溫度控制器設計. 山東工業技術, 2017(3): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201703003.htm
    [29] Mathonat C, Majer V, Mather A E, et al. Use of flow calorimetry for determining enthalpies of absorption and the solubility of CO2 in aqueous monoethanolamine solutions. Ind Eng Chem Res, 1998, 37(10): 4136 doi: 10.1021/ie9707679
    [30] Kim I, Svendsen H F. Comparative study of the heats of absorption of post-combustion CO2 absorbents. Int J Greenhouse Gas Control, 2011, 5(3): 390 doi: 10.1016/j.ijggc.2010.05.003
    [31] Kim I, Hoff K A, Mejdell T. Heat of absorption of CO2 with aqueous solutions of MEA: new experimental data. Energy Procedia, 2014, 63: 1446 doi: 10.1016/j.egypro.2014.11.154
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  880
  • HTML全文瀏覽量:  363
  • PDF下載量:  14
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-03-20
  • 刊出日期:  2019-03-20

目錄

    /

    返回文章
    返回