Effectiveness of edge drop control of tapered work roll shifting during tandem cold rolling process
-
摘要: 在冷連軋無取向硅鋼薄帶過程中,為了實現錐形工作輥竄動自動控制邊降,需要合理的確定功效系數與策略。這種系數的獲得,不只需要研究本道次的軋輥彈性變形、薄帶橫向流動、機架間變形對竄輥效率的影響,更重要的是需研究上游機架竄輥對下游機架的影響。這就需要高效的仿真模型來完成以上計算。基于邊降區域的金屬橫向流動理論,建立了將橫向流動視為純剪切增量的數值模型,避免了沿帶寬方向建立剛度矩陣,從而提高了計算效率。同時考慮了薄帶在機架間發生的軋后屈服流動,由于錐形工作輥竄動,打破了帶鋼斷面的等比例遺傳關系,使得軋后帶鋼在邊部區域需要縮寬并減薄來補償邊部延伸率差。所建立的數值模型通過工業現場實驗驗證,相比于原有模型具有更高的精度。完成了兩個機架連續計算,研究了上游機架竄輥對下游機架出口邊降的影響。研究發現,第一機架的邊降控制范圍最寬,第二、三機架控制范圍逐漸變窄。根據該規律設計了根據三點邊降偏差的配合調控策略,相比單點策略在工業應用中取得了更好效果。Abstract: In the process of tandem cold rolling of nonoriented silicon steel strip, it is imperative to design the control strategy and initial values of the edge drop control efficiency coefficient to achieve automated control in the edge drop by shifting tapered work roll. To obtain these values, intensive modeling is needed to study not only the effects of work roll deformation, metal transverse flow, and inter-stand deformation on tapered work roll shifting at one stand but also the effects of different work roll shifting values at the upstream stand on the edge drop at downstream stand. These intensive calculations have to be performed by an accurate numerical model with a high cost/effective ratio. Based on the metal transverse flow theory at the edge drop zone, a numerical model was built in this study, in which the lateral flow was treated as a pure shear increment inside the rolling region, so that building a stiffness matrix in the lateral direction was not needed and modeling cost was saved. Additionally, inter-stand deformation was considered. Considering the proportional ratio of the strip was broken by the tapered work roll shifting, the longitudinal strain at the strip edge was considerably lower than the strain at the center, which leaded to shrinking and thinning near the edge. It was proved that the coupled model can provide results, which were obtained through industrial experiments, with higher accuracy compared with the original one. Successive calculations of two stands were conducted to reveal the control effectiveness of different tapered work roll shifting values at upstream stand on the downstream stand. It has been observed that the edge drop control region is the widest at the 1st stand, and its width successively reduces at the 2nd and 3rd stands. Based on this rule, a control strategy based on a three-point measure instead of a single point was proposed, and it was proved to be more effective than the one-point measure used in industrial applications.
-
表 1 軋制參數表
Table 1. Table of rolling parameters
機架號 入口厚度/mm 壓下量/% 后前張力/MPa 摩擦系數 1 2.50 30 15/135 0.085 2 1.80 35 135/140 0.080 3 1.18 31 140/145 0.070 4 0.80 28 145/145 0.060 259luxu-164 -
參考文獻
[1] Hu Q, Wang X C, Yang Q. Design and application of automatic edge drop control system for 6-high tandem cold rolling mill. Metall Ind Autom, 2016, 40(1): 34 doi: 10.3969/j.issn.1000-7059.2016.01.008胡強, 王曉晨, 楊荃. 六輥冷連軋機邊降自動控制系統設計及應用. 冶金自動化, 2016, 40(1):34 doi: 10.3969/j.issn.1000-7059.2016.01.008 [2] Zhang Y, Gao J, Wu K K, et al. Application research for edge drop control on cold mill of single taper roll. Metall Ind Autom, 2016, 40(1): 45 doi: 10.3969/j.issn.1000-7059.2016.01.010張巖, 高健, 吳鯤魁, 等. 單錐度輥冷軋機邊部減薄控制應用研究. 冶金自動化, 2016, 40(1):45 doi: 10.3969/j.issn.1000-7059.2016.01.010 [3] Cao J G, Chai X T, Li Y L, et al. Integrated design of roll contours for strip edge drop and crown control in tandem cold rolling mills. J Mater Process Technol, 2018, 252: 432 doi: 10.1016/j.jmatprotec.2017.09.038 [4] Lee J S, Shin T J, Yoon S J, et al. Prediction of steady-state strip profile in flat rolling. Steel Res Int, 2016, 87(7): 930 doi: 10.1002/srin.201600032 [5] Pawelski O, Teutsch H. A mathematical model for computing the distribution of loads and thickness in the width direction of a strip rolled in four-high cold-rolling mills. Eng Fract Mech, 1985, 21(4): 853 doi: 10.1016/0013-7944(85)90092-X [6] Jiang Z Y, Wei D, Tieu A K. Analysis of cold rolling of ultra-thin strip. J Mater Process Technol, 2009, 209(9): 4584 doi: 10.1016/j.jmatprotec.2008.10.035 [7] Sun W Q, Yang Q, Shao J, et al. Edge drop control technique of silicon steel for UCM tandem cold rolling mills. J Univ Sci Technol Beijing, 2010, 32(10): 1340孫文權, 楊荃, 邵健, 等. UCM冷連軋機硅鋼邊降控制技術. 北京科技大學學報, 2010, 32(10):1340 [8] Ma X B, Wang D C, Liu H M. Coupling mechanism of control on strip profile and flatness in single stand universal crown reversible rolling mill. Steel Res Int, 2017, 88(9): 1600495 doi: 10.1002/srin.201600495 [9] Wang X C, Yang Q, Jiang Z Y, et al. Research on the improvement effect of high tension on flatness deviation in cold strip rolling. Steel Res Int, 2015, 85(11): 1560 [10] Lian J C, Duan Z Y, Ye X. Study of rolling region metal transverse flow by 3 dimensional analytical method. J Yanshan Univ, 1984(3): 1連家創, 段振勇, 葉星. 三維解析法求解輥縫中金屬橫向流動問題. 燕山大學學報, 1984(3):1 [11] Le H R, Sutcliffe M P F. A robust model for rolling of thin strip and foil. Int J Mech Sci, 2001, 43(6): 1405 doi: 10.1016/S0020-7403(00)00092-8 [12] Feng X W, Wang X C, Sun J Q, et al. Analysis of tapered work roll shifting technique in 5-stand UCMW tandem cold rolling process [J/OL]. Australian Journal of Mechanical Engineering (2019-04-23) [2019-06-01]. https://doi.org/10.1080/14484846.2019.1606762 [13] Guan J L, He A R, Sun W Q. Modeling and simulation of thin aluminum cold rolling with work roll edge contact. J Northeast Univ Nat Sci, 2015, 36(7): 942管健龍, 何安瑞, 孫文權. 薄鋁帶軋制工作輥邊部接觸的建模與仿真. 東北大學學報: 自然科學版, 2015, 36(7):942 [14] Liu L W, Zhang S T, Wu Z P. Influence of tension on the deformation of strip during cold rolling. Iron Steel, 2000, 35(4): 37 doi: 10.3321/j.issn:0449-749X.2000.04.010劉立文, 張樹堂, 武志平. 張力對冷軋板帶變形的影響. 鋼鐵, 2000, 35(4):37 doi: 10.3321/j.issn:0449-749X.2000.04.010 [15] Hacquin A, Montmitonnet P, Guillerault J P. A steady state thermo-elastoviscoplastic finite element model of rolling with coupled thermo-elastic roll deformation. J Mater Process Technol, 1996, 60(1-4): 109 doi: 10.1016/0924-0136(96)02315-1 -