<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

薄帶冷連軋工作輥竄輥邊降調控功效

王曉晨 馮夏維 徐冬 楊荃 孫薊泉

王曉晨, 馮夏維, 徐冬, 楊荃, 孫薊泉. 薄帶冷連軋工作輥竄輥邊降調控功效[J]. 工程科學學報, 2020, 42(2): 242-248. doi: 10.13374/j.issn2095-9389.2019.03.01.003
引用本文: 王曉晨, 馮夏維, 徐冬, 楊荃, 孫薊泉. 薄帶冷連軋工作輥竄輥邊降調控功效[J]. 工程科學學報, 2020, 42(2): 242-248. doi: 10.13374/j.issn2095-9389.2019.03.01.003
WANG Xiao-chen, FENG Xia-wei, XU Dong, YANG Quan, SUN Ji-quan. Effectiveness of edge drop control of tapered work roll shifting during tandem cold rolling process[J]. Chinese Journal of Engineering, 2020, 42(2): 242-248. doi: 10.13374/j.issn2095-9389.2019.03.01.003
Citation: WANG Xiao-chen, FENG Xia-wei, XU Dong, YANG Quan, SUN Ji-quan. Effectiveness of edge drop control of tapered work roll shifting during tandem cold rolling process[J]. Chinese Journal of Engineering, 2020, 42(2): 242-248. doi: 10.13374/j.issn2095-9389.2019.03.01.003

薄帶冷連軋工作輥竄輥邊降調控功效

doi: 10.13374/j.issn2095-9389.2019.03.01.003
基金項目: 國家自然科學基金資助項目(51604024);北京市自然科學基金資助項目(3182026);廣西創新驅動發展專項資金資助項目(桂科AA17202008)
詳細信息
    通訊作者:

    E-mail: fengxiawei@qq.com

  • 中圖分類號: TG334.9

Effectiveness of edge drop control of tapered work roll shifting during tandem cold rolling process

More Information
  • 摘要: 在冷連軋無取向硅鋼薄帶過程中,為了實現錐形工作輥竄動自動控制邊降,需要合理的確定功效系數與策略。這種系數的獲得,不只需要研究本道次的軋輥彈性變形、薄帶橫向流動、機架間變形對竄輥效率的影響,更重要的是需研究上游機架竄輥對下游機架的影響。這就需要高效的仿真模型來完成以上計算。基于邊降區域的金屬橫向流動理論,建立了將橫向流動視為純剪切增量的數值模型,避免了沿帶寬方向建立剛度矩陣,從而提高了計算效率。同時考慮了薄帶在機架間發生的軋后屈服流動,由于錐形工作輥竄動,打破了帶鋼斷面的等比例遺傳關系,使得軋后帶鋼在邊部區域需要縮寬并減薄來補償邊部延伸率差。所建立的數值模型通過工業現場實驗驗證,相比于原有模型具有更高的精度。完成了兩個機架連續計算,研究了上游機架竄輥對下游機架出口邊降的影響。研究發現,第一機架的邊降控制范圍最寬,第二、三機架控制范圍逐漸變窄。根據該規律設計了根據三點邊降偏差的配合調控策略,相比單點策略在工業應用中取得了更好效果。

     

  • 圖  1  邊降自動控制系統(a)和工作輥竄輥調控功效系數(b)

    Figure  1.  Schematic of edge drop control system (a) and schematic showing the effectiveness of tapered work roll shifting (b)

    圖  2  薄帶軋制受力與變形分析圖。(a) 正視圖;(b) 側視圖;(c) 俯視圖

    Figure  2.  Force and deformation diagram of strip rolling: (a) front view; (b) side view; (c) top view

    圖  3  整體計算流程

    Figure  3.  Flow chart of the improved model

    圖  4  模型驗證。(a) 第一機架計算結果; (b) 第二機架計算結果

    Figure  4.  Validation of model: (a) results of 1st stand; (b) results of 2nd stand

    圖  5  錐形工作輥竄輥邊降調控功效系數。(a)第1特征點;(b)第2特征點;(c)第3特征點;(d)三點配合調控策略應用效果

    Figure  5.  Effectiveness of edge drop control of tapered work roll shifting: (a) at measuring Point 1; (b) at measuring Point 2; (c) at measuring Point 3; (d) applied effects of three-point control strategy

    表  1  軋制參數表

    Table  1.   Table of rolling parameters

    機架號入口厚度/mm壓下量/%后前張力/MPa摩擦系數
    12.503015/1350.085
    21.8035135/1400.080
    31.1831140/1450.070
    40.8028145/1450.060
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Hu Q, Wang X C, Yang Q. Design and application of automatic edge drop control system for 6-high tandem cold rolling mill. Metall Ind Autom, 2016, 40(1): 34 doi: 10.3969/j.issn.1000-7059.2016.01.008

    胡強, 王曉晨, 楊荃. 六輥冷連軋機邊降自動控制系統設計及應用. 冶金自動化, 2016, 40(1):34 doi: 10.3969/j.issn.1000-7059.2016.01.008
    [2] Zhang Y, Gao J, Wu K K, et al. Application research for edge drop control on cold mill of single taper roll. Metall Ind Autom, 2016, 40(1): 45 doi: 10.3969/j.issn.1000-7059.2016.01.010

    張巖, 高健, 吳鯤魁, 等. 單錐度輥冷軋機邊部減薄控制應用研究. 冶金自動化, 2016, 40(1):45 doi: 10.3969/j.issn.1000-7059.2016.01.010
    [3] Cao J G, Chai X T, Li Y L, et al. Integrated design of roll contours for strip edge drop and crown control in tandem cold rolling mills. J Mater Process Technol, 2018, 252: 432 doi: 10.1016/j.jmatprotec.2017.09.038
    [4] Lee J S, Shin T J, Yoon S J, et al. Prediction of steady-state strip profile in flat rolling. Steel Res Int, 2016, 87(7): 930 doi: 10.1002/srin.201600032
    [5] Pawelski O, Teutsch H. A mathematical model for computing the distribution of loads and thickness in the width direction of a strip rolled in four-high cold-rolling mills. Eng Fract Mech, 1985, 21(4): 853 doi: 10.1016/0013-7944(85)90092-X
    [6] Jiang Z Y, Wei D, Tieu A K. Analysis of cold rolling of ultra-thin strip. J Mater Process Technol, 2009, 209(9): 4584 doi: 10.1016/j.jmatprotec.2008.10.035
    [7] Sun W Q, Yang Q, Shao J, et al. Edge drop control technique of silicon steel for UCM tandem cold rolling mills. J Univ Sci Technol Beijing, 2010, 32(10): 1340

    孫文權, 楊荃, 邵健, 等. UCM冷連軋機硅鋼邊降控制技術. 北京科技大學學報, 2010, 32(10):1340
    [8] Ma X B, Wang D C, Liu H M. Coupling mechanism of control on strip profile and flatness in single stand universal crown reversible rolling mill. Steel Res Int, 2017, 88(9): 1600495 doi: 10.1002/srin.201600495
    [9] Wang X C, Yang Q, Jiang Z Y, et al. Research on the improvement effect of high tension on flatness deviation in cold strip rolling. Steel Res Int, 2015, 85(11): 1560
    [10] Lian J C, Duan Z Y, Ye X. Study of rolling region metal transverse flow by 3 dimensional analytical method. J Yanshan Univ, 1984(3): 1

    連家創, 段振勇, 葉星. 三維解析法求解輥縫中金屬橫向流動問題. 燕山大學學報, 1984(3):1
    [11] Le H R, Sutcliffe M P F. A robust model for rolling of thin strip and foil. Int J Mech Sci, 2001, 43(6): 1405 doi: 10.1016/S0020-7403(00)00092-8
    [12] Feng X W, Wang X C, Sun J Q, et al. Analysis of tapered work roll shifting technique in 5-stand UCMW tandem cold rolling process [J/OL]. Australian Journal of Mechanical Engineering (2019-04-23) [2019-06-01]. https://doi.org/10.1080/14484846.2019.1606762
    [13] Guan J L, He A R, Sun W Q. Modeling and simulation of thin aluminum cold rolling with work roll edge contact. J Northeast Univ Nat Sci, 2015, 36(7): 942

    管健龍, 何安瑞, 孫文權. 薄鋁帶軋制工作輥邊部接觸的建模與仿真. 東北大學學報: 自然科學版, 2015, 36(7):942
    [14] Liu L W, Zhang S T, Wu Z P. Influence of tension on the deformation of strip during cold rolling. Iron Steel, 2000, 35(4): 37 doi: 10.3321/j.issn:0449-749X.2000.04.010

    劉立文, 張樹堂, 武志平. 張力對冷軋板帶變形的影響. 鋼鐵, 2000, 35(4):37 doi: 10.3321/j.issn:0449-749X.2000.04.010
    [15] Hacquin A, Montmitonnet P, Guillerault J P. A steady state thermo-elastoviscoplastic finite element model of rolling with coupled thermo-elastic roll deformation. J Mater Process Technol, 1996, 60(1-4): 109 doi: 10.1016/0924-0136(96)02315-1
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數:  1476
  • HTML全文瀏覽量:  1260
  • PDF下載量:  74
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-03-01
  • 刊出日期:  2020-02-01

目錄

    /

    返回文章
    返回