As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605
-
摘要: 利用光學顯微鏡(OM)、場發射掃描電子顯微鏡(FESEM)、能譜分析(EDS) 并結合熱力學及動力學計算結果對采用真空感應熔煉和電渣重熔二聯工藝生產的GH5605合金電渣錠的枝晶形貌、元素偏析和析出相進行分析.探索了合金的高溫擴散退火制度并結合差示掃描量熱儀(DSC) 和熱壓縮模擬實驗分析高溫擴散退火前后的合金特征.結果表明: GH5605合金中的枝晶和元素偏析情況較輕, 主要偏析元素是Cr和W并在枝晶間處偏聚, 電渣錠中的主要析出相包括奧氏體、晶界M23C6以及晶內和晶界處的奧氏體與M23C6板條狀共晶相.經1210℃/8 h擴散退火處理后枝晶和元素偏析基本消除, 共晶相基本回溶.Abstract: The dendritic morphology, elements segregation index, precipitates morphology, and precipitates types in GH5605 ingot produced by vacuum induction melting and electroslag remelting were investigated by using optical microscopy (OM), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS) spectrum analysis and the results of thermodynamic and kinetic calculations by Thermal-Calc and JMatPro sofeware. To study the effects of high-temperature diffusion annealing on GH5605 ingot, the annealing system was investigated and the microstructure and macrostructure characteristics of GH5605 ingot were analyzed before and after the diffusion annealing by differential scanning calorimetry (DSC) and thermal compression simulation tests in Gleeble 3800 test machine. In the OM results, dendrites are not obvious, and secondary dendritic arms cannot be distinguished in the GH5605 surface but they are gradually clearer toward the center area. The EDS results show that element segregation index is comparably small in GH5605 ingot; every element segregation index is in the range of 0. 9-1. 4 which is not as large as those of nickelbased superalloy. The main segregating elements during solidification are Cr and W which mainly segregate in the dendritic regions.According to the FESEM results, the precipitate phases include austenite and grain boundary carbide M23C6 and because of the Cr and W segregation at dendritic arms, an unexpected eutectic phase comprising austenite and M23C6 appears, and the alternating lamellae of austentite and M23C6 develop a lathlike morphology. Different macrostructure and microstructure characteristics including the morphology of dendritic, elements segregation index, grain size, morphology and the amount of eutectic phase were analyzed and compared in different annealing times. The high-temperature diffusion annealing system is optimal at 1210 ℃/8 h, at which the dendrites and elemental segregation are substantially eliminated, and the eutectic phase is almost dissolved.
-
Key words:
- cobalt-base superalloy /
- segregation /
- dendritic /
- eutectic /
- high temperature diffusion annealing
-
表 1 GH5605合金化學成分(質量分數)
Table 1. Main chemical composition of GH5605 superalloy ?
% C Cr Mn Fe Ni W Co 0.09 19.75 1.55 2.40 10.36 14.65 余量 表 2 GH5605合金枝晶間距
Table 2. Dendrite spacing in GH5605 superalloy
取樣位置 一次枝晶間距/μm 二次枝晶間距/μm 外緣 115.65 93.25 1/2半徑 225.00 115.00 心部 237.50 132.13 表 3 鑄錠元素偏析系數
Table 3. Elements segregation coefficient of ingot
取樣位置 C Cr Mn Fe Co Ni W 外緣 0.97 1.10 1.31 0.92 0.93 0.94 1.13 1/2半徑 0.95 1.08 1.31 0.93 0.95 0.96 1.10 心部 0.94 1.14 1.40 0.86 0.91 0.87 1.25 平均值 0.95 1.11 1.34 0.90 0.93 0.92 1.16 表 4 典型析出相成分(質量分數)
Table 4. Composition of typical precipitates ?
% 析出相 C Cr Mn Fe Co Ni W 晶界析出相 4.73 43.99 1.95 1.67 22.68 4.42 20.57 島狀析出相 3.33 26.39 1.46 1.04 18.70 2.24 46.84 表 5 不同退火制度下Cr和W的元素偏析系數
Table 5. Elements segregation coefficients of Cr and W in different an-nealing system
元素 鑄態 1210℃/4h 1210℃/8h 1210℃/12h Cr 1.11 1.06 1.00 1.00 W 1.16 1.04 1.00 1.00 259luxu-164 -
參考文獻
[1] Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008郭建亭. 高溫合金材料學. 北京: 科學出版社, 2008 [2] Keyvani M, Garcin T, Fabrègue D, et al. Continuous measurements of recrystallization and grain growth in cobalt super alloys. Metall Mater Trans A, 2017, 48(5): 2363 doi: 10.1007/s11661-017-4027-8 [3] Favre J, Koizumi Y, Chiba A, et al. Deformation behavior and dynamic recrystallization of biomedical Co-Cr-W-Ni (L-605) alloy. Metall Mater Trans A, 2013, 44(6): 2819 doi: 10.1007/s11661-012-1602-x [4] Kumar V A, Gupta R K, Murty S V S N, et al. Hot workability and microstructure control in Co20Cr15W10Ni cobalt based superalloy. J Alloys Compd, 2016, 676: 527 doi: 10.1016/j.jallcom.2016.03.186 [5] Ueki K, Ueda K, Narushima T. Microstructure and mechanical properties of heat-treated Co-20Cr-15W-10Ni alloy for biomedical application. Metall Mater Trans A, 2016, 47(6): 2773 doi: 10.1007/s11661-016-3488-5 [6] Yamanaka K, Mori M, Kuramoto K, et al. Development of new Co-Cr-W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater Des, 2014, 55: 987 doi: 10.1016/j.matdes.2013.10.052 [7] Academic Committee of the Superalloys, CSM. China Superalloys Handbooks (volume 1). Beijing: Standard Press of China, 2012中國金屬學會高溫材料分會. 中國高溫合金手冊(上卷). 北京: 中國標準出版社, 2012 [8] Gui W M, Zhang H Y, Yang M, et al. Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy. J Alloys Compd, 2017, 728: 145 doi: 10.1016/j.jallcom.2017.08.287 [9] Gui W M, Zhang H Y, Yang M, et al. The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature. J Alloys Compd, 2017, 695: 1271 doi: 10.1016/j.jallcom.2016.10.256 [10] Koβmann J, Zenk C H, Lopez-Galilea I, et al. Microsegregation and precipitates of an as-cast Co-based superalloy-microstructural characterization and phase stability modelling. J Mate Sci, 2015, 50(19): 6329 doi: 10.1007/s10853-015-9177-8 [11] Chiba A, Kurosu S, Akasaka Y, et al. Co-based Alloy for Living Body and Stent: United States Patent, 20130226281A1.2013-8-29 [12] Magyar S T, Hirakis E C, Gell M L, et al. Oxidation Resistant Cobalt Base Alloy: United States Patent, US4078922A. 1978-3-14 [13] Favre J, Fabrègue D, Maire E, et al. Grain growth and static recrystallization kinetics in Co-20Cr-15W-10Ni (L-605) cobaltbase superalloy. Philos Mag, 2014, 94(18): 1992 doi: 10.1080/14786435.2014.903342 [14] Favre J, Fabrègue D, Yamanaka K, et al. Modeling dynamic recrystallization of L-605 cobalt superalloy. Mater Sci Eng A, 2016, 653: 84 doi: 10.1016/j.msea.2015.12.003 [15] Weeton J W, Signorelli R A. An Investigation of Lamellar Structures and Minor Phase in Eleven Cobalt-Base Alloys Before and After Heat Treatment. Washington, 1954 [16] Mani A, Salinas R, Lopez H F. Deformation induced FCC to HCP transformation in a Co-27Cr-5Mo-0.05C alloy. Mater Sci Eng A, 2011, 528(7-8): 3037 doi: 10.1016/j.msea.2010.12.024 [17] Vacchieri E, Costa A, Roncallo G, et al. Service induced fcc→ hcp martensitic transformation in a Co-based superalloy. Mater Sci Technol, 2017, 33(9): 1100 doi: 10.1080/02670836.2016.1273866 [18] Koizumi Y, Suzuki S, Yamanaka K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy. Acta Mater, 2013, 61(5): 1648 doi: 10.1016/j.actamat.2012.11.041 [19] Bensona M L, Liaw P K, Saleh T A, et al. Deformation-induced phase development in a cobalt-based superalloy during monotonic and cyclic deformation. Phys B, 2006, 385-386: 523 doi: 10.1016/j.physb.2006.05.262 [20] Tawancy H M, Ishwar V R, Lewis B E. On the fcc-hcp transformation in a cobalt-base superalloy (Haynes alloy No. 25). J Mater Sci Lett, 1986, 5: 337 doi: 10.1007/BF01748098 [21] Saldivar G, Mani M, Salinas R, et al. Effect of solution treatments on the fcc/hcp isothermal martensitic transformation in Co-27Cr-5Mo-0.05C aged at 800℃. Scripta Mater, 1999, 40(6): 717 doi: 10.1016/S1359-6462(98)00489-8 [22] Jiang H, Dong J X, Zhang M C, et al. Microstructure and homogenization of as-cast 617B alloy for 700℃ ultra-supercritical boilers. J Univ Sci Technol Beijing, 2014, 36(6): 795 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201406013.htm江河, 董建新, 張麥倉, 等. 700℃超超臨界鍋爐材料617B合金鑄態組織及均勻化工藝. 北京科技大學學報, 2014, 36(6): 795 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201406013.htm -