<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

加載方向對Al—Zn—Mg合金型材應力腐蝕開裂行為的影響

吳建山 鄧運來 張臻 張議丹 孫琳

吳建山, 鄧運來, 張臻, 張議丹, 孫琳. 加載方向對Al—Zn—Mg合金型材應力腐蝕開裂行為的影響[J]. 工程科學學報, 2019, 41(3): 350-358. doi: 10.13374/j.issn2095-9389.2019.03.008
引用本文: 吳建山, 鄧運來, 張臻, 張議丹, 孫琳. 加載方向對Al—Zn—Mg合金型材應力腐蝕開裂行為的影響[J]. 工程科學學報, 2019, 41(3): 350-358. doi: 10.13374/j.issn2095-9389.2019.03.008
WU Jian-shan, DENG Yun-lai, ZHANG Zhen, ZHANG Yi-dan, SUN Lin. Effect of sampling direction on the stress corrosion cracking behavior of Al-Zn-Mg alloy[J]. Chinese Journal of Engineering, 2019, 41(3): 350-358. doi: 10.13374/j.issn2095-9389.2019.03.008
Citation: WU Jian-shan, DENG Yun-lai, ZHANG Zhen, ZHANG Yi-dan, SUN Lin. Effect of sampling direction on the stress corrosion cracking behavior of Al-Zn-Mg alloy[J]. Chinese Journal of Engineering, 2019, 41(3): 350-358. doi: 10.13374/j.issn2095-9389.2019.03.008

加載方向對Al—Zn—Mg合金型材應力腐蝕開裂行為的影響

doi: 10.13374/j.issn2095-9389.2019.03.008
基金項目: 

國家重點研發計劃資助項目 2016YFB0300901

國家重點基礎研究發展計劃資助項目 2012CB619500

國家自然科學基金資助項目 51375503

詳細信息
    通訊作者:

    張臻, E-mail: helenyan_cheung@163.com

  • 中圖分類號: TG146.21;TG113

Effect of sampling direction on the stress corrosion cracking behavior of Al-Zn-Mg alloy

More Information
  • 摘要: 采用恒載荷拉伸應力腐蝕試驗和電化學試驗研究取向對Al-Zn-Mg合金型材的應力腐蝕(SCC) 開裂的影響, 腐蝕介質采用質量分數3. 5%的Na Cl溶液, 容器溫度維持在50±2℃, 并通過光學金相顯微鏡(OM)、掃描電子顯微鏡(SEM)、電子背散射衍射(EBSD) 等研究不同取向試樣應力腐蝕前、后的微觀形貌.結果表明橫向試樣在315 h時斷裂, 而縱向試樣在整個加載過程中未發生斷裂, 縱向試樣有更好的抗應力腐蝕開裂性能; 縱截面(L-S面) 的腐蝕電流密度為0. 980 m A·cm-2, 約為橫截面(T-S面) 的5倍, 腐蝕傾向于沿擠壓方向發展; 相比T-S面, L-S面晶粒間取向差較大, 大角度晶界多, 容易被腐蝕產生裂紋; 在應力腐蝕加載過程中, 試樣先發生陽極溶解, 形成腐蝕坑, 聚集的腐蝕產物所產生的楔入力和恒定載荷的共同作用促使裂紋在腐蝕介質中加速擴展, 兩種取向試樣均發生了明顯的晶間腐蝕, 存在應力腐蝕開裂的傾向.

     

  • 圖  1  試驗尺寸(a) 和取樣圖(b)

    Figure  1.  Specimen dimensions (a) and schematic of the sample processing modes (b)

    圖  2  金相顯微組織照片. (a) L-S面; (b) T-S

    Figure  2.  Optical micrographs: (a) longitudinal section (L-S); (b) transverse section (T-S)

    圖  3  Al-Zn-Mg合金的掃描照片. (a) L-S面; (b) T-S

    Figure  3.  SEM images of the Al-Zn-Mg alloy: (a) L-S; (b) T-S

    圖  4  Al-Zn-Mg合金型材的透射電鏡明場像. (a) 晶內; (b) 晶界; (c) 衍射斑點

    Figure  4.  Bright-field TEM images of the Al-Zn-Mg alloy: (a) intragranular; (b) grain boundary; (c) diffraction spots

    圖  5  極化曲線

    Figure  5.  Polarization curve

    圖  6  L-S面和T-S面電子背散射衍射測試結果. (a, b) 取向成像圖; (c, d) 晶粒尺寸分布圖; (e, f) 取向差分布圖; (g; h) 再結晶組織統計柱狀圖

    Figure  6.  EBSD results of L-S and T-S surfaces: (a, b) orientation image map; (c, d) grain size distribution; (e, f) misorientation distribution; (g, h) recrystallization fraction chart

    圖  7  試樣斷口側面金相. (a) 縱向試樣L-S面; (b) 橫向試樣T-S面; (c) graff試劑腐蝕后縱向試樣的L-S面; (d) graff試劑腐蝕后橫向試樣的T-S

    Figure  7.  Optical microscopy images of the specimen fracture: (a) L-S surface; (b) T-S surface; (c) L-S surface corroded by graff reagent; (d) T-S surface corroded by graff reagent

    圖  8  試樣斷口形貌照片. (a) 縱向試樣斷口宏觀形貌; (b) 橫向試樣斷口宏觀形貌; (c) 縱向試樣斷口腐蝕坑形貌; (d) 橫向試樣腐蝕區域低倍形貌; (e) 縱向試樣未腐蝕區域形貌; (f) 橫向試樣腐蝕區域A位置的高倍照片

    Figure  8.  SEM images of the fractography: (a) macro morphology of longitudinal specimen; (b) macro morphology of transverse specimen; (c) mor-phology of corroded area of longitudinal specimen; (d) morphology of corroded area of transverse specimen; (e) morphology of the uncorroded area of longitudinal specimen; (f) high magnification images of area A

    圖  9  能譜分析. (a) 第二相能譜; (b) 線溝槽附近能譜

    Figure  9.  Energy spectrum analysis: (a) second-phase energy spectrum; (b) EDS near-line grooves

    表  1  材料的化學成分(質量分數)

    Table  1.   Chemical composition of the materials ?%

    Zn Mg Cu Mn Cr Zr Ti Si Fe Al
    4.3~5.0 1.0~1.3 0.05~0.20 0.10~0.40 0.20 0.08~0.30 <0.035 <0.12 <0.12 余量
    下載: 導出CSV

    表  2  圖 3的第二相能譜分析結果(質量分數)

    Table  2.   EDS analysis results of second - phase particles shown in Fig.3 ?%

    Fig.3位置 Mg Al Si Cr Mn Fe Cu Zn 其他
    a1 0.24 67.65 3.96 1.43 5.20 20.43 1.11 0.00
    a2 0.44 72.47 3.46 1.02 3.60 16.33 0.50 1.85 0.33
    a3 1.52 92.35 0.53 4.66 0.94
    a4 1.40 93.71 0.71 0.28 4.16 0.00
    b1 0.08 65.79 4.59 1.37 4.36 21.92 1.90 0.00
    b2 0.56 73.20 2.91 0.77 3.30 16.41 0.04 2.15 0.66
    b3 1.19 93.58 0.04 4.21 0.98
    b4 1.51 92.29 0.34 0.32 0.67 4.54 0.33
    下載: 導出CSV

    表  3  極化曲線擬合值

    Table  3.   Fitting results of the polarization curves

    試樣 Ecorr/V Icorr/(mA·cm-2)
    T-S -0.912 0.219
    L-S -0.906 0.980
    下載: 導出CSV

    表  4  恒載荷實驗結果

    Table  4.   Constant load test results

    試樣 載荷/MPa 伸長率/% 試驗時間/h 是否斷裂
    橫向 225 2.69 319.45
    225 2.82 311.28
    225 2.73 315.12
    縱向 225 4.56 360.00
    225 4.92 360.00
    225 4.88 360.00
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xiao T, Lin H Q, Ye L Y, et al. Effect of corrosion conditions on strength and toughness of Al-Zn-Mg aluminum alloys. Chin J Nonferrous Met, 2016, 26(7): 1391 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201607004.htm

    肖濤, 林化強, 葉凌英, 等. 腐蝕條件對Al-Zn-Mg鋁合金強韌性能的影響. 中國有色金屬學報, 2016, 26(7): 1391 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201607004.htm
    [2] Deng Y L, Wang Y F, Lin H Q, et al. Effect of extrusion temperature on strength and fracture toughness of an Al-Zn-Mg alloy. Chin J Mater Res, 2016, 30(2): 87 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201602002.htm

    鄧運來, 王亞風, 林化強, 等. 擠壓溫度對Al-Zn-Mg合金力學性能的影響. 材料研究學報, 2016, 30(2): 87 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201602002.htm
    [3] Li Y, Yu X. Research on application of aluminum-extruded-profiles in military electronic equipment. Machine Build Autom, 2015, 44(3): 68 doi: 10.3969/j.issn.1671-5276.2015.03.021

    李云, 于新. 鋁型材在軍用電子設備結構中的應用研究. 機械制造與自動化, 2015, 44(3): 68 doi: 10.3969/j.issn.1671-5276.2015.03.021
    [4] Zhuang J J, Zhang X Y, Sun B, et al. Microarc oxidation coatings and corrosion behavior of 7050 aluminum alloy. Chin J Eng, 2017, 39(10): 1532 doi: 10.13374/j.issn2095-9389.2017.10.011

    莊俊杰, 張曉燕, 孫斌, 等. 微弧氧化對7050鋁合金腐蝕行為的影響. 工程科學學報, 2017, 39(10): 1532 doi: 10.13374/j.issn2095-9389.2017.10.011
    [5] Chen Y Q, Deng Y L, Wan L, et al. Microstructures and properties of 7050 aluminum alloy sheet during creep aging. J Mater Eng, 2012(1): 71 doi: 10.3969/j.issn.1001-4381.2012.01.015

    陳愿情, 鄧運來, 萬里, 等. 蠕變時效對7050鋁合金板材組織與性能的影響. 材料工程, 2012(1): 71 doi: 10.3969/j.issn.1001-4381.2012.01.015
    [6] Braun R. Environmentally assisted cracking of aluminum alloys. Materialwiss Werkstofftech, 2007, 38(9): 674 doi: 10.1002/mawe.200700204
    [7] Hou L G, Zhao F, Zhuang L Z, et al. Retrogression and re-aging 7B50 Al alloy plates based on examining the through-thickness microstructures and mechanical properties. Chin J Eng, 2017, 39(3): 432 doi: 10.13374/j.issn2095-9389.2017.03.016

    侯隴剛, 趙鳳, 莊林忠, 等. 基于厚向組織性能考量的7B50鋁合金中厚板回歸再時效熱處理. 工程科學學報, 2017, 39(3): 432 doi: 10.13374/j.issn2095-9389.2017.03.016
    [8] Liu J H, Li D, Guo B L. Investigation of stress corrosion cracking of 7xxx series aluminum alloys. Corros Sci Prot Technol, 2001, 13(4): 218 doi: 10.3969/j.issn.1002-6495.2001.04.009

    劉繼華, 李荻, 郭寶蘭. 7xxx系列Al合金應力腐蝕開裂的研究. 腐蝕科學與防護技術, 2001, 13(4): 218 doi: 10.3969/j.issn.1002-6495.2001.04.009
    [9] Jha A K, Murty S V S N, Diwakar V, et al. Metallurgical analysis of cracking in weldment of propellant tank. Eng Fail Anal, 2003, 10(3): 265 doi: 10.1016/S1350-6307(02)00073-0
    [10] Rao A C U, Vasu V, Govindaraju M, et al. Stress corrosion cracking behaviour of 7xxx aluminum alloys: a literature review. Trans Nonferrous Met Soc China, 2016, 26(6): 1447 doi: 10.1016/S1003-6326(16)64220-6
    [11] O?oro J. The stress corrosion cracking behaviour of heat-treated Al-Zn-Mg-Cu alloy in modified salt spray fog testing. Mater Corros, 2010, 61(2): 125 doi: 10.1002/maco.200905255
    [12] Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A, 2000, 280(1): 102 doi: 10.1016/S0921-5093(99)00674-7
    [13] Chen K H, Huang L P. Strengthening toughening of 7xxx series high strength aluminum alloys by heat treatment. Trans Nonferrous Met Soc China, 2003, 13(3): 484 http://www.cqvip.com/qk/84127x/200302/8137849.html
    [14] Yu B S, Xing S M, Ao X H, et al. Effect of pressures on macro-/microstructures and mechanical properties of A380 aluminum alloy. Chin J Eng, 2017, 39(7): 1020 doi: 10.13374/j.issn2095-9389.2017.07.006

    于佰水, 邢書明, 敖曉輝, 等. 壓力對A380鋁合金的鑄造組織和力學性能的影響. 工程科學學報, 2017, 39(7): 1020 doi: 10.13374/j.issn2095-9389.2017.07.006
    [15] Lee E U, Taylor R, Lei C, et al. Stress corrosion cracking of aluminum alloys. Metall Trans A, 1975, 6(4): 631 doi: 10.1007/BF02672284
    [16] Xiao Y P, Pan Q L, Li W B, et al. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy. Mater Des, 2011, 32(4): 2149 doi: 10.1016/j.matdes.2010.11.036
    [17] Wang D, Ma Z Y. Effect of pre-strain on microstructure and stress corrosion cracking of over-aged 7050 aluminum alloy. J Alloys Compd, 2009, 469(1-2): 445 doi: 10.1016/j.jallcom.2008.01.137
    [18] Rometsch P A, Zhang Y, Knight S. Heat treatment of 7xxx series aluminium alloys-Some recent developments. Trans Nonferrous Met Soc China, 2014, 24(7): 2003 doi: 10.1016/S1003-6326(14)63306-9
    [19] Speidel M O. Stress corrosion cracking of aluminum alloys. Metall Trans A, 1975, 6(4): 631 doi: 10.1007/BF02672284
    [20] Fang H C, Chao H, Chen K H. Effect of recrystallization on intergranular fracture and corrosion of Al-Zn-Mg-Cu-Zr alloy. J Alloys Compd, 2015, 622: 166 doi: 10.1016/j.jallcom.2014.10.044
    [21] Huang J, Peng G S, Song G S, et al. The effect of undissolved particles and the recrystallization on the resistance of SCC of Al-Zn-Mg-Cu alloys. J Qilu Univ Technol, 2018, 32(2): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-SQGX201802010.htm

    黃俊, 彭國勝, 宋廣生, 等. 未溶相和再結晶對Al-Zn-Mg-Cu合金應力腐蝕抗力的影響. 齊魯工業大學學報, 2018, 32(2): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-SQGX201802010.htm
    [22] Shi Y J, Pan Q L, Li M J, et al. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys. J Alloys Compd, 2014, 612: 42 doi: 10.1016/j.jallcom.2014.05.128
    [23] Liu J H, Hao X L, Li S M, et al. Resistance to stress corrosion cracking of new Ali-Mg-Cu alloy containing Sc. Chin J Nonferrous Met, 2010, 20(3): 415 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201003008.htm

    劉建華, 郝雪龍, 李松梅, 等. 新型含鈧Al-Mg-Cu合金的抗應力腐蝕開裂特性. 中國有色金屬學報, 2010, 20(3): 415 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201003008.htm
    [24] Song R G, Zeng M G. Hydrogen embrittlement of high strength aluminum alloys. J Mater Sci Eng, 1995, 13(1): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX501.012.htm

    宋仁國, 曾梅光. 高強度鋁合金的氫脆. 材料科學與工程, 1995, 13(1): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX501.012.htm
    [25] Viswanadham R K, Sun T S, Green J A S. Grain boundary segregation in Al-Zn-Mg alloys-Implications to stress corrosion cracking. Metall Mater Trans A, 1980, 11(1): 85 doi: 10.1007/BF02700441
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  1222
  • HTML全文瀏覽量:  565
  • PDF下載量:  21
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-08-19
  • 刊出日期:  2019-03-20

目錄

    /

    返回文章
    返回