Effect of sampling direction on the stress corrosion cracking behavior of Al-Zn-Mg alloy
-
摘要: 采用恒載荷拉伸應力腐蝕試驗和電化學試驗研究取向對Al-Zn-Mg合金型材的應力腐蝕(SCC) 開裂的影響, 腐蝕介質采用質量分數3. 5%的Na Cl溶液, 容器溫度維持在50±2℃, 并通過光學金相顯微鏡(OM)、掃描電子顯微鏡(SEM)、電子背散射衍射(EBSD) 等研究不同取向試樣應力腐蝕前、后的微觀形貌.結果表明橫向試樣在315 h時斷裂, 而縱向試樣在整個加載過程中未發生斷裂, 縱向試樣有更好的抗應力腐蝕開裂性能; 縱截面(L-S面) 的腐蝕電流密度為0. 980 m A·cm-2, 約為橫截面(T-S面) 的5倍, 腐蝕傾向于沿擠壓方向發展; 相比T-S面, L-S面晶粒間取向差較大, 大角度晶界多, 容易被腐蝕產生裂紋; 在應力腐蝕加載過程中, 試樣先發生陽極溶解, 形成腐蝕坑, 聚集的腐蝕產物所產生的楔入力和恒定載荷的共同作用促使裂紋在腐蝕介質中加速擴展, 兩種取向試樣均發生了明顯的晶間腐蝕, 存在應力腐蝕開裂的傾向.
-
關鍵詞:
- Al-Zn-Mg合金 /
- 取樣方向 /
- 應力腐蝕開裂 /
- 陽極溶解 /
- 晶間腐蝕
Abstract: Thick-section Al-Zn-Mg aluminum alloy extrusions are key materials for manufacturing rail transit vehicles, and stress corrosion cracking (SCC) is an important engineering application problem during the service life of these materials. The effect of sampling direction on the stress corrosion cracking behavior of Al-Zn-Mg alloys was investigated through constant load tensile stress corrosion and electrochemical tests. The microstructures of specimens were analyzed in different sampling directions both before and after stress corrosion via optical microscopy, scanning electron microscopy, and electron backscatter diffraction. Specimens with their tensile axes parallel or perpendicular to the extrusion direction of the extruded profiles were labeled as longitudinal specimens and transverse specimens, respectively. The specimens were completely immersed in a corrosive solution, a mixture of 35 g Na Cl and 1 L deionized water, with a constant unidirectional loading of 225 MPa for 360 h at 50 ± 2 ℃. The experimental results show that the transverse specimen is fractured at 315 h, whereas the longitudinal specimen does not break during the entire loading process. Thus, the transverse specimens have poor resistance to stress corrosion cracking. The corrosion current density of the longitudinal section (L-S) is0. 980 m A·cm-2, which is approximately 5 times that of the transverse section (T-S). Thus, corrosion tends to propagate along the longitudinal direction. The L-S is more susceptible to corrosion than the T-S owing to the larger misorientation difference and higher energy of the grain boundary. During the stress corrosion loading process, anodic dissolution occurs and forms corrosion pits. Then, the cooperation of the wedge force produced by the accumulation of corrosion products and constant load causes the crack to propagate along the grain boundary. Intergranular corrosion of the two types of samples is obvious under all immersion corrosion conditions. Different specimens exhibit the tendency to undergo stress corrosion cracking. -
圖 8 試樣斷口形貌照片. (a) 縱向試樣斷口宏觀形貌; (b) 橫向試樣斷口宏觀形貌; (c) 縱向試樣斷口腐蝕坑形貌; (d) 橫向試樣腐蝕區域低倍形貌; (e) 縱向試樣未腐蝕區域形貌; (f) 橫向試樣腐蝕區域A位置的高倍照片
Figure 8. SEM images of the fractography: (a) macro morphology of longitudinal specimen; (b) macro morphology of transverse specimen; (c) mor-phology of corroded area of longitudinal specimen; (d) morphology of corroded area of transverse specimen; (e) morphology of the uncorroded area of longitudinal specimen; (f) high magnification images of area A
表 1 材料的化學成分(質量分數)
Table 1. Chemical composition of the materials ?
% Zn Mg Cu Mn Cr Zr Ti Si Fe Al 4.3~5.0 1.0~1.3 0.05~0.20 0.10~0.40 0.20 0.08~0.30 <0.035 <0.12 <0.12 余量 表 2 圖 3的第二相能譜分析結果(質量分數)
Table 2. EDS analysis results of second - phase particles shown in Fig.3 ?
% Fig.3位置 Mg Al Si Cr Mn Fe Cu Zn 其他 a1 0.24 67.65 3.96 1.43 5.20 20.43 — 1.11 0.00 a2 0.44 72.47 3.46 1.02 3.60 16.33 0.50 1.85 0.33 a3 1.52 92.35 — — — — 0.53 4.66 0.94 a4 1.40 93.71 0.71 — — 0.28 — 4.16 0.00 b1 0.08 65.79 4.59 1.37 4.36 21.92 — 1.90 0.00 b2 0.56 73.20 2.91 0.77 3.30 16.41 0.04 2.15 0.66 b3 1.19 93.58 — — — — 0.04 4.21 0.98 b4 1.51 92.29 — 0.34 0.32 — 0.67 4.54 0.33 表 3 極化曲線擬合值
Table 3. Fitting results of the polarization curves
試樣 Ecorr/V Icorr/(mA·cm-2) T-S -0.912 0.219 L-S -0.906 0.980 表 4 恒載荷實驗結果
Table 4. Constant load test results
試樣 載荷/MPa 伸長率/% 試驗時間/h 是否斷裂 橫向 225 2.69 319.45 是 225 2.82 311.28 是 225 2.73 315.12 是 縱向 225 4.56 360.00 否 225 4.92 360.00 否 225 4.88 360.00 否 259luxu-164 -
參考文獻
[1] Xiao T, Lin H Q, Ye L Y, et al. Effect of corrosion conditions on strength and toughness of Al-Zn-Mg aluminum alloys. Chin J Nonferrous Met, 2016, 26(7): 1391 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201607004.htm肖濤, 林化強, 葉凌英, 等. 腐蝕條件對Al-Zn-Mg鋁合金強韌性能的影響. 中國有色金屬學報, 2016, 26(7): 1391 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201607004.htm [2] Deng Y L, Wang Y F, Lin H Q, et al. Effect of extrusion temperature on strength and fracture toughness of an Al-Zn-Mg alloy. Chin J Mater Res, 2016, 30(2): 87 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201602002.htm鄧運來, 王亞風, 林化強, 等. 擠壓溫度對Al-Zn-Mg合金力學性能的影響. 材料研究學報, 2016, 30(2): 87 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201602002.htm [3] Li Y, Yu X. Research on application of aluminum-extruded-profiles in military electronic equipment. Machine Build Autom, 2015, 44(3): 68 doi: 10.3969/j.issn.1671-5276.2015.03.021李云, 于新. 鋁型材在軍用電子設備結構中的應用研究. 機械制造與自動化, 2015, 44(3): 68 doi: 10.3969/j.issn.1671-5276.2015.03.021 [4] Zhuang J J, Zhang X Y, Sun B, et al. Microarc oxidation coatings and corrosion behavior of 7050 aluminum alloy. Chin J Eng, 2017, 39(10): 1532 doi: 10.13374/j.issn2095-9389.2017.10.011莊俊杰, 張曉燕, 孫斌, 等. 微弧氧化對7050鋁合金腐蝕行為的影響. 工程科學學報, 2017, 39(10): 1532 doi: 10.13374/j.issn2095-9389.2017.10.011 [5] Chen Y Q, Deng Y L, Wan L, et al. Microstructures and properties of 7050 aluminum alloy sheet during creep aging. J Mater Eng, 2012(1): 71 doi: 10.3969/j.issn.1001-4381.2012.01.015陳愿情, 鄧運來, 萬里, 等. 蠕變時效對7050鋁合金板材組織與性能的影響. 材料工程, 2012(1): 71 doi: 10.3969/j.issn.1001-4381.2012.01.015 [6] Braun R. Environmentally assisted cracking of aluminum alloys. Materialwiss Werkstofftech, 2007, 38(9): 674 doi: 10.1002/mawe.200700204 [7] Hou L G, Zhao F, Zhuang L Z, et al. Retrogression and re-aging 7B50 Al alloy plates based on examining the through-thickness microstructures and mechanical properties. Chin J Eng, 2017, 39(3): 432 doi: 10.13374/j.issn2095-9389.2017.03.016侯隴剛, 趙鳳, 莊林忠, 等. 基于厚向組織性能考量的7B50鋁合金中厚板回歸再時效熱處理. 工程科學學報, 2017, 39(3): 432 doi: 10.13374/j.issn2095-9389.2017.03.016 [8] Liu J H, Li D, Guo B L. Investigation of stress corrosion cracking of 7xxx series aluminum alloys. Corros Sci Prot Technol, 2001, 13(4): 218 doi: 10.3969/j.issn.1002-6495.2001.04.009劉繼華, 李荻, 郭寶蘭. 7xxx系列Al合金應力腐蝕開裂的研究. 腐蝕科學與防護技術, 2001, 13(4): 218 doi: 10.3969/j.issn.1002-6495.2001.04.009 [9] Jha A K, Murty S V S N, Diwakar V, et al. Metallurgical analysis of cracking in weldment of propellant tank. Eng Fail Anal, 2003, 10(3): 265 doi: 10.1016/S1350-6307(02)00073-0 [10] Rao A C U, Vasu V, Govindaraju M, et al. Stress corrosion cracking behaviour of 7xxx aluminum alloys: a literature review. Trans Nonferrous Met Soc China, 2016, 26(6): 1447 doi: 10.1016/S1003-6326(16)64220-6 [11] O?oro J. The stress corrosion cracking behaviour of heat-treated Al-Zn-Mg-Cu alloy in modified salt spray fog testing. Mater Corros, 2010, 61(2): 125 doi: 10.1002/maco.200905255 [12] Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A, 2000, 280(1): 102 doi: 10.1016/S0921-5093(99)00674-7 [13] Chen K H, Huang L P. Strengthening toughening of 7xxx series high strength aluminum alloys by heat treatment. Trans Nonferrous Met Soc China, 2003, 13(3): 484 http://www.cqvip.com/qk/84127x/200302/8137849.html [14] Yu B S, Xing S M, Ao X H, et al. Effect of pressures on macro-/microstructures and mechanical properties of A380 aluminum alloy. Chin J Eng, 2017, 39(7): 1020 doi: 10.13374/j.issn2095-9389.2017.07.006于佰水, 邢書明, 敖曉輝, 等. 壓力對A380鋁合金的鑄造組織和力學性能的影響. 工程科學學報, 2017, 39(7): 1020 doi: 10.13374/j.issn2095-9389.2017.07.006 [15] Lee E U, Taylor R, Lei C, et al. Stress corrosion cracking of aluminum alloys. Metall Trans A, 1975, 6(4): 631 doi: 10.1007/BF02672284 [16] Xiao Y P, Pan Q L, Li W B, et al. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy. Mater Des, 2011, 32(4): 2149 doi: 10.1016/j.matdes.2010.11.036 [17] Wang D, Ma Z Y. Effect of pre-strain on microstructure and stress corrosion cracking of over-aged 7050 aluminum alloy. J Alloys Compd, 2009, 469(1-2): 445 doi: 10.1016/j.jallcom.2008.01.137 [18] Rometsch P A, Zhang Y, Knight S. Heat treatment of 7xxx series aluminium alloys-Some recent developments. Trans Nonferrous Met Soc China, 2014, 24(7): 2003 doi: 10.1016/S1003-6326(14)63306-9 [19] Speidel M O. Stress corrosion cracking of aluminum alloys. Metall Trans A, 1975, 6(4): 631 doi: 10.1007/BF02672284 [20] Fang H C, Chao H, Chen K H. Effect of recrystallization on intergranular fracture and corrosion of Al-Zn-Mg-Cu-Zr alloy. J Alloys Compd, 2015, 622: 166 doi: 10.1016/j.jallcom.2014.10.044 [21] Huang J, Peng G S, Song G S, et al. The effect of undissolved particles and the recrystallization on the resistance of SCC of Al-Zn-Mg-Cu alloys. J Qilu Univ Technol, 2018, 32(2): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-SQGX201802010.htm黃俊, 彭國勝, 宋廣生, 等. 未溶相和再結晶對Al-Zn-Mg-Cu合金應力腐蝕抗力的影響. 齊魯工業大學學報, 2018, 32(2): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-SQGX201802010.htm [22] Shi Y J, Pan Q L, Li M J, et al. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys. J Alloys Compd, 2014, 612: 42 doi: 10.1016/j.jallcom.2014.05.128 [23] Liu J H, Hao X L, Li S M, et al. Resistance to stress corrosion cracking of new Ali-Mg-Cu alloy containing Sc. Chin J Nonferrous Met, 2010, 20(3): 415 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201003008.htm劉建華, 郝雪龍, 李松梅, 等. 新型含鈧Al-Mg-Cu合金的抗應力腐蝕開裂特性. 中國有色金屬學報, 2010, 20(3): 415 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201003008.htm [24] Song R G, Zeng M G. Hydrogen embrittlement of high strength aluminum alloys. J Mater Sci Eng, 1995, 13(1): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX501.012.htm宋仁國, 曾梅光. 高強度鋁合金的氫脆. 材料科學與工程, 1995, 13(1): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX501.012.htm [25] Viswanadham R K, Sun T S, Green J A S. Grain boundary segregation in Al-Zn-Mg alloys-Implications to stress corrosion cracking. Metall Mater Trans A, 1980, 11(1): 85 doi: 10.1007/BF02700441 -