<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

單晶硅脆塑轉變臨界厚度的原位實驗

劉冰 徐宗偉 李蕊 何忠杜

劉冰, 徐宗偉, 李蕊, 何忠杜. 單晶硅脆塑轉變臨界厚度的原位實驗[J]. 工程科學學報, 2019, 41(3): 343-349. doi: 10.13374/j.issn2095-9389.2019.03.007
引用本文: 劉冰, 徐宗偉, 李蕊, 何忠杜. 單晶硅脆塑轉變臨界厚度的原位實驗[J]. 工程科學學報, 2019, 41(3): 343-349. doi: 10.13374/j.issn2095-9389.2019.03.007
LIU Bing, XU Zong-wei, LI Rui, HE Zong-du. In-situ experiment on critical thickness of brittle-ductile transition of single-crystal silicon[J]. Chinese Journal of Engineering, 2019, 41(3): 343-349. doi: 10.13374/j.issn2095-9389.2019.03.007
Citation: LIU Bing, XU Zong-wei, LI Rui, HE Zong-du. In-situ experiment on critical thickness of brittle-ductile transition of single-crystal silicon[J]. Chinese Journal of Engineering, 2019, 41(3): 343-349. doi: 10.13374/j.issn2095-9389.2019.03.007

單晶硅脆塑轉變臨界厚度的原位實驗

doi: 10.13374/j.issn2095-9389.2019.03.007
基金項目: 

國家自然科學基金資助項目 51805371

天津市自然科學基金資助項目 18JCQNJC75400

天津市自然科學基金資助項目 17JCZDJC38200

詳細信息
    通訊作者:

    劉冰, E-mail: liubing@tjcu.edu.cn

  • 中圖分類號: TP122;TH69;TH162+.1

In-situ experiment on critical thickness of brittle-ductile transition of single-crystal silicon

More Information
  • 摘要: 為提高單晶硅納米切削表面質量的同時, 不影響加工效率, 以掃描電子顯微鏡高分辨在線觀測技術為手段, 在真空環境下開展了單晶硅原位納米切削實驗研究.首先, 利用聚焦離子束對單晶硅材料進行樣品制備, 并對金剛石刀具進行納米級刃口的可控修銳.然后, 利用掃描電子顯微鏡實時觀察裂紋的萌生與擴展, 分析了單晶硅納米切削脆性去除行為.最后, 分別采用刃口半徑為40、50和60 nm的金剛石刀具研究了晶體取向和刃口半徑對單晶硅脆塑轉變臨界厚度的影響.實驗結果表明: 在所研究的晶體取向范圍內, 在(111)晶面上沿[111]晶向進行切削時, 單晶硅最容易以塑性模式被去除, 脆塑轉變臨界厚度約為80 nm.此外, 刀具刃口半徑越小, 單晶硅在納米切削過程中越容易發生脆性斷裂, 當刀具刃口半徑為40 nm時, 脆塑轉變臨界厚度約為40 nm.然而刀具刃口半徑減小的同時, 已加工表面質量有所提高, 即刀具越鋒利越容易獲得表面質量高的塑性表面.

     

  • 圖  1  納米切削實驗平臺. (a) 原理圖; (b) 實物圖

    Figure  1.  Experimental platform for nano-cutting tests: (a) schematic; (b) physical map

    圖  2  對刀過程. (a) 樣品表面出現陰影; (b) 陰影逐漸靠近刀具

    Figure  2.  Tool setting process: (a) shadow appeared on the sample surface; (b) shadow gradually approached the tool

    圖  3  單晶硅已加工表面的原子力顯微鏡測量. (a) 三維形貌圖; (b) 截面圖

    Figure  3.  Measurement of single-crystal silicon machined surface by AFM: (a) three-dimensional morphology; (b) cross section diagram

    圖  4  單晶硅樣品的聚焦離子束制備

    Figure  4.  Sample preparation of single-crystal silicon by FIB

    圖  5  金剛石刀具聚焦離子束修銳

    Figure  5.  Dressing of the diamond cutting tool by FIB

    圖  6  單晶硅斜切表面形貌

    Figure  6.  Surface morphology of single-crystal silicon after taper-cutting

    圖  7  單晶硅脆性切削材料去除過程. (a) 產生脆性剝離; (b) 出現脆性凹坑; (c) 刀具繼續進給; (d) 形成微裂紋

    Figure  7.  Material removal process of single-crystal silicon in brittle mode: (a) brittle peeling occurred; (b) brittle pit appeared; (c) cutting tool con-tinued to feed; (d) microcrack formed

    圖  8  單晶硅脆性去除區的截面分析. (a) 聚焦離子束拋光示意圖; (b) 脆性去除表面

    Figure  8.  Cross section analysis of brittle-cut region of single-crystal silicon: (a) schematic of FIB polishing; (b) brittle-cut surface

    圖  9  單晶硅脆性切屑形貌

    Figure  9.  SEM morphology of single-crystal silicon brittle chips

    圖  10  不同切削厚度(110) 面[111]向的單晶硅已切削表面形貌. (a) 40 nm; (b) 70 nm; (c) 100 nm

    Figure  10.  Surface morphology of machined silicon along[111]orientation on (110) plane with different cutting depths: (a) 40 nm; (b) 70 nm; (c) 100 nm

    表  1  單晶硅不同晶向脆塑轉變臨界厚度

    Table  1.   Critical thickness of brittle-ductile transition of single-crystal silicon in different orientations

    晶面 晶向 脆塑轉變臨界厚度/nm
    第1次 第2次 第3次 平均值
    (110) [001] 40 45 45 43.3
    [111] 70 70 65 68.3
    (111) [001] 55 50 55 53.3
    [111] 80 75 85 80.0
    下載: 導出CSV

    表  2  刀具刃口半徑對表面質量及脆塑轉變臨界厚度的影響

    Table  2.   Effect of tool edge radius on surface quality and critical thick-ness of brittle--ductile transition

    刃口半徑/nm 脆塑轉變厚度/nm 表面粗糙度/nm
    40 40 4. 62
    50 55 6. 56
    60 70 7. 81
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Arif M, Rahman M, San W Y. A state-of-the-art review of ductile cutting of silicon wafers for semiconductor and microelectronics industries. Int J Adv Manuf Technol, 2012, 63(5-8): 481 doi: 10.1007/s00170-012-3937-2
    [2] Zhou M, Wang X J, Ngoi B K A, et al. Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. J Mater Process Technol, 2002, 121(2-3): 243 doi: 10.1016/S0924-0136(01)01262-6
    [3] Zhao H W, Yang B H, Zhao H J, et al. Test of nanomechanical properties of single crystal silicon. Opt Precis Eng, 2009, 17(7): 1602 doi: 10.3321/j.issn:1004-924X.2009.07.016

    趙宏偉, 楊柏豪, 趙宏健, 等. 單晶硅納米力學性能的測試. 光學精密工程, 2009, 17(7): 1602 doi: 10.3321/j.issn:1004-924X.2009.07.016
    [4] Gong S, Ren X C, Chen G, et al. Effect of microstructure on the cleavage fracture stress of high-speed railway wheel steel. Chin J Eng, 2016, 38(4): 522 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201604011.htm

    龔帥, 任學沖, 陳剛, 等. 微觀組織對高速車輪鋼解理斷裂應力的影響. 工程科學學報, 2016, 38(4): 522 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201604011.htm
    [5] Chavoshi S Z, Goel S, Luo X C. Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: a molecular dynamics simulation investigation. J Manuf Processes, 2016, 23: 201 doi: 10.1016/j.jmapro.2016.06.009
    [6] Yao M Q, Tang B, Su W. Morphologic control of wet anisotropic silicon etching. Opt Precis Eng, 2016, 24(2): 350 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201602014.htm

    姚明秋, 唐彬, 蘇偉. 單晶硅各向異性濕法刻蝕的形貌控制. 光學精密工程, 2016, 24(2): 350 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201602014.htm
    [7] Lee S H. Analysis of ductile mode and brittle transition of AFM nanomachining of silicon. Int J Mach Tools Manuf, 2012, 61: 71 doi: 10.1016/j.ijmachtools.2012.05.011
    [8] Wu H, Melkote S N. Effect of crystallographic orientation on ductile scribing of crystalline silicon: role of phase transformation and slip. Mater Sci Eng A, 2012, 549: 200 doi: 10.1016/j.msea.2012.04.034
    [9] Wang M H. Research on Mechanism of Brittle-Ductile Transition and Influencing Factors of Ultra-Precision Turning Single Crystal Silicon[Dissertation]. Harbin: Harbin Institute of Technology, 2006

    王明海. 單晶硅超精密切削脆塑轉變機理及影響因素的研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2006
    [10] Uesugi A, Hirai Y, Tsuchiya T, et al. Size effect on brittle-ductile transition temperature of silicon by means of tensile testing//2015 28th IEEE International Conference on Micro Electro Mechanical Systems. Estoril, 2015: 389
    [11] Wang Z G, Zhang P, Chen J X, et al. Effect of C-C bond breakage on diamond tool wear in nanometric cutting of silicon. Acta Phys Sin, 2015, 64(19): ArtNo. 198104 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201519044.htm

    王治國, 張鵬, 陳家軒, 等. 單晶硅納米切削中C-C鍵斷裂對金剛石刀具磨損的影響. 物理學報, 2015, 64(19): ArtNo. 198104 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201519044.htm
    [12] Fang F Z, Xu F F, Lai M. Size effect in material removal by cutting at nano scale. Int J Adv Manuf Technol, 2015, 80(1-4): 591 doi: 10.1007/s00170-015-7032-3
    [13] Han X S, Lin B, Yu S Y, et al. Investigation of tool geometry in nanometric cutting by molecular dynamics simulation. J Mater Process Technol, 2002, 129(1-3): 105 doi: 10.1016/S0924-0136(02)00585-X
    [14] Liu K, Li X P, Rahman M, et al. A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int J Adv Manuf Technol, 2007, 32(7): 631 doi: 10.1007/s00170-005-0364-7
    [15] Mir A, Luo X C, Sun J N. The investigation of influence of tool wear on ductile to brittle transition in single point diamond turning of silicon. Wear, 2016, 364-365: 233 doi: 10.1016/j.wear.2016.08.003
    [16] Zhu B, Zhao D, Zhao H W, et al. A study on the surface quality and brittle-ductile transition during the elliptical vibration-assisted nanocutting process on monocrystalline silicon via molecular dynamic simulations. RSC Adv, 2017, 7: 4179 doi: 10.1039/C6RA25426H
    [17] Fang F Z, Liu B, Xu Z W. Nanometric cutting in a scanning electron microscope. Precis Eng, 2015, 41: 145 doi: 10.1016/j.precisioneng.2015.01.009
    [18] Zhang Z Y, Wu Y Q, Guo D M, et al. Phase transformation of single crystal silicon induced by grinding with ultrafine diamond grits. Scripta Mater, 2011, 64(2): 177 doi: 10.1016/j.scriptamat.2010.09.038
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  845
  • HTML全文瀏覽量:  341
  • PDF下載量:  21
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-02-24
  • 刊出日期:  2019-03-20

目錄

    /

    返回文章
    返回