Effect of Si content on hot deformation behavior and dynamic recrystallization of high silicon electrical steel
-
摘要: 采用Gleeble-3800D熱模擬試驗機在應變量0.6、變形溫度750~1050℃、應變速率0.01~1 s-1工藝條件范圍內, 研究了Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼的熱變形與動態再結晶行為.采用線性回歸方法, 建立了三種成分實驗鋼的流變應力本構方程.計算得到Fe-5.5% Si、Fe-6.0% Si和Fe-6.5% Si高硅電工鋼的熱變形激活能分別為310.425、363.831和422.162 kJ·mol-1, 說明Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼的熱變形激活能隨Si質量分數的增加而增大, 這使得Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼相同條件下的變形抗力隨Si含量的升高而增大.采用金相截線法對不同成分和變形條件下實驗鋼的動態再結晶百分數進行了統計, 結果表明: 同一熱變形條件下, Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼的動態再結晶百分數隨Si質量分數的升高而減小.本文實驗條件下, 當變形溫度為750~850℃時, Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼軟化機制主要為動態回復; 而變形溫度為950~1050℃時, Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼軟化機制主要為動態再結晶.Abstract: High-silicon electrical steel is an excellent soft magnetic material with high permeability, low coercive force, and nearzero magnetostriction coefficient. Compared with other preparation methods of high-silicon electrical steel sheet, the rolling method has the advantages of short process and high efficiency. Among the rolling methods, hot rolling is one of the most important part in the formation of high-silicon electrical steel sheet. Therefore, it is very important to study the hot deformation and dynamic recrystallization behaviors of high-silicon electrical steels. In this study, hot deformation and dynamic recrystallization behaviors of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steel were studied using a Gleeble-3800D thermal-mechanical simulator with a deformation temperature of 750-1050℃ and strain rate of 0.01-1 s-1. The constitutive equations of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steels were established by linear regression analysis. The thermal deformation activation energies of Fe-5.5% Si, Fe-6.0% Si, and Fe-6.5% Si high-silicon electrical steel are 310.425, 363.831, and 422.162 kJ·mol-1, respectively. It is observed that the thermal deformation activation energies of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steel improve with the increase of Si content, which makes the deformation resistance of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steel improve with the increase of Si content. Moreover, the dynamic recrystallization percentage was calculated using the intercept method of metallographic examination, and the statistical results show that the dynamic recrystallization percentage of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steel decreases with the increase of Si content under the same deformation condition. Meanwhile, at the temperature of 750-850℃, the softening mechanism of Fe-(5.5%, 6.0%, 6.5%) Si high-silicon electrical steel is mainly dynamic recovery, while at the temperature of 950-1050℃, the softening mechanism is mainly dynamic recrystallization.
-
圖 1 Fe-5.5%Si高硅電工鋼真應力-真應變曲線. (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1
Figure 1. True stress-true strain curves of Fe-5.5%Si high-silicon electrical steel: (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1
圖 2 Fe-6.0%Si高硅電工鋼真應力-真應變曲線. (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1
Figure 2. True stress-true strain curves of Fe-6.0%Si high-silicon electrical steel: (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1
圖 3 Fe-6.5%Si高硅電工鋼真應力-真應變曲線. (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1
Figure 3. True stress--true strain curves of Fe-6.5%Si high-silicon electrical steel: (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1
圖 4 高硅電工鋼峰值應力σP隨Si質量分數及變形溫度T的變化趨勢圖. (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1
Figure 4. Variation of peak stress with Si content and deformation temperature T in high-silicon electrical steel: (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1
圖 5 Fe-5.5%Si高硅電工鋼峰值應力與應變速率的關系. $({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$
Figure 5. Relationship between peak stress and strain rate of Fe-5.5%Si high-silicon electrical steel: $({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$
圖 6 Fe-6.0%Si高硅電工鋼峰值應力與應變速率的關系.$({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$
Figure 6. Relationship between peak stress and strain rate of Fe-6.0%Si high-silicon electrical steel: $({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$
圖 7 Fe-6.5%Si高硅電工鋼峰值應力與應變速率的關系.$({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$
Figure 7. Relationship between peak stress and strain rate of Fe-6.5%Si high-silicon electrical steel: $({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$
圖 10 高硅電工鋼壓縮變形顯微組織$\left( {\dot \varepsilon = 0.01{{\rm{s}}^{ - 1}}} \right)$. (a) 5.5%Si, 850℃; (b) 5.5%Si, 950℃; (c) 6.0%Si, 850℃; (d) 6.0%Si, 950℃; (e) 6.5%Si, 850℃; (f) 6.5%Si, 950℃
Figure 10. Compression deformation microstructure of high-silicon electrical steel $\left( {\dot \varepsilon = 0.01{{\rm{s}}^{ - 1}}} \right)$: (a) 5.5%Si, 850℃; (b) 5.5%Si, 950℃; (c) 6.0%Si, 850℃; (d) 6.0%Si, 950℃; (e) 6.5%Si, 850℃; (f) 6.5%Si, 950℃
表 1 高硅電工鋼的ασ計算值
Table 1. Calculated ασ value of high-silicon electrical steel
試樣 $\dot \varepsilon $/s-1 750℃ 850℃ 950℃ 1050℃ Fe-5.5.% Si 1 4.167 2.405 1.453 1.004 0.1 3.306 1.500 0.857 0.514 0.01 1.502 0.626 0.366 0.306 Fe-6.0% Si 1 6.110 2.748 1.637 1.037 0.1 4.248 2.377 1.163 0.838 0.01 3.146 1.185 0.813 0.385 Fe-6.5% Si 1 5.495 2.644 1.152 0.940 0.1 3.942 1.492 0.962 0.481 0.01 2.509 0.811 0.382 0.263 259luxu-164 -
參考文獻
[1] Xu H J, Xu Y B, Jiao H T, et al. Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5 wt% Si steel. J Magn Magn Mater, 2018, 453: 236 doi: 10.1016/j.jmmm.2018.01.036 [2] Yu J H, Shin J S, Bae J S, et al. The effect of heat treatments and Si contents on B2 ordering reaction in high-silicon steels. Mater Sci Eng A, 2001, 307(1-2): 29 doi: 10.1016/S0921-5093(00)01960-2 [3] Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5% Si steel sheet. J Magn Magn Mater, 1996, 160: 109 doi: 10.1016/0304-8853(96)00128-X [4] Li R, Shen Q, Zhang L M, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling. J Magn Magn Mater, 2004, 281(2-3): 135 doi: 10.1016/j.jmmm.2004.04.098 [5] Liang Y F, Lin J P, Ye F, et al. Microstructure and mechanical properties of rapidly quenched Fe-6.5 wt. % Si alloy. J Alloys Compd, 2010, 504(Suppl 1): S476 http://www.sciencedirect.com/science/article/pii/S0925838810005566 [6] Kasama A H, Bolfarini C, Kiminami C S, et al. Magnetic properties evaluation of spray formed and rolled Fe-6.5 wt. % Si-1.0 wt. % Al alloy. Mater Sci Eng A, 2007, 449-451: 375 doi: 10.1016/j.msea.2006.02.318 [7] Lin J P, Zhong T B, Lin Z, et al. Fabrication of the sheets for Fe 3 Si based alloy. J Univ Sci Technol Beijing, 2001, 23(5): 442 doi: 10.3321/j.issn:1001-053X.2001.05.015林均品, 鐘太彬, 林志, 等. Fe3Si基合金板材的制備技術. 北京科技大學學報, 2001, 23(5): 442 doi: 10.3321/j.issn:1001-053X.2001.05.015 [8] Ros-Ya?ez T, Houbaert Y, Fischer O, et al. Production of high silicon steel for electrical applications by thermomechanical processing. J Mater Process Technol, 2003, 141(1): 132 doi: 10.1016/S0924-0136(03)00247-4 [9] Zhang B, Zhu L L, Wang K S, et al. High temperature plastic deformation behavior and constitutive equation of pure nickel. Chin J Rare Met, 2015, 39(5): 406 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201505004.htm張兵, 朱樂樂, 王快社, 等. 純鎳的高溫塑性變形行為及本構方程. 稀有金屬, 2015, 39(5): 406 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201505004.htm [10] Mo Y K, Zhang Z H, Xie J X, et al. Effect of recrystallization on the microstructure, ordering and mechanical properties of coldrolled high silicon electrical steel sheet. Acta Metall Sin, 2016, 52(11): 1363 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201611001.htm莫遠科, 張志豪, 謝建新, 等. 再結晶退火對高硅電工鋼冷軋帶材組織、有序結構和力學性能的影響. 金屬學報, 2016, 52(11): 1363 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201611001.htm [11] Yang H, Li Z H, Zhang Z L. Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi. J Zhejiang Univ SCI A, 2006, 7(8): 1453 doi: 10.1631/jzus.2006.A1453 [12] Mirzadeh H, Najafizadeh A, Moazeney M. Flow curve analysis of 17-4 PH stainless steel under hot compression test. Metall Mater Trans A, 2009, 40(12): 2950 doi: 10.1007/s11661-009-0029-5 [13] Chen L Q, Zhao Y, Xu X Q, et al. Dynamic recrystallization and precipitation behaviors of a kind of low carbon-microalloyed steel. Acta Metall Sin, 2010, 46(10): 1215 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201010010.htm陳禮清, 趙陽, 徐香秋, 等. 一種低碳釩微合金鋼的動態再結晶與析出行為. 金屬學報, 2010, 46(10): 1215 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201010010.htm [14] Mirzadeh H, Cabrera J M, Prado J M, et al. Hot deformation behavior of a medium carbon microalloyed steel. Mater Sci Eng A, 2011, 528(10-11): 3876 doi: 10.1016/j.msea.2011.01.098 [15] Wei H L, Liu G Q. Hot deformation behavior of a medium carbon vanadium microalloyed steel based on constitutive analysis. Mater Sci Technol, 2014, 22(3): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201403011.htm魏海蓮, 劉國權. 基于本構分析的中碳釩微合金鋼熱變形行為. 材料科學與工藝, 2014, 22(3): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201403011.htm [16] He X, Zhang Y M, Song K X, et al. Study on hot deformation behaviors of Cu-Be-Co alloy. J Plast Eng, 2015, 22(2): 105 doi: 10.3969/j.issn.1007-2012.2015.02.019何霞, 張彥敏, 宋克興, 等. Cu-0.23Be-0.84Co合金熱變形行為. 塑性工程學報, 2015, 22(2): 105 doi: 10.3969/j.issn.1007-2012.2015.02.019 [17] Sellars C M, McTegart W J. On the mechanism of hot deformation. Acta Metall, 1966, 14(9): 1136 doi: 10.1016/0001-6160(66)90207-0 [18] Shin J S, Bae J S, Kim H J, et al. Ordering-disordering phenomena and micro-hardness characteristics of B2 phase in Fe-(5-6.5%) Si alloys. Mater Sci Eng A, 2005, 407(1-2): 282 doi: 10.1016/j.msea.2005.07.012 [19] Medina S F, Hernandez C A. General expression of the ZenerHollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Mater, 1996, 44(1): 137 doi: 10.1016/1359-6454(95)00151-0 -