<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Si含量對高硅電工鋼熱變形與動態再結晶行為的影響

肖飛 張志豪 付華棟

肖飛, 張志豪, 付華棟. Si含量對高硅電工鋼熱變形與動態再結晶行為的影響[J]. 工程科學學報, 2019, 41(3): 332-342. doi: 10.13374/j.issn2095-9389.2019.03.006
引用本文: 肖飛, 張志豪, 付華棟. Si含量對高硅電工鋼熱變形與動態再結晶行為的影響[J]. 工程科學學報, 2019, 41(3): 332-342. doi: 10.13374/j.issn2095-9389.2019.03.006
XIAO Fei, ZHANG Zhi-hao, FU Hua-dong. Effect of Si content on hot deformation behavior and dynamic recrystallization of high silicon electrical steel[J]. Chinese Journal of Engineering, 2019, 41(3): 332-342. doi: 10.13374/j.issn2095-9389.2019.03.006
Citation: XIAO Fei, ZHANG Zhi-hao, FU Hua-dong. Effect of Si content on hot deformation behavior and dynamic recrystallization of high silicon electrical steel[J]. Chinese Journal of Engineering, 2019, 41(3): 332-342. doi: 10.13374/j.issn2095-9389.2019.03.006

Si含量對高硅電工鋼熱變形與動態再結晶行為的影響

doi: 10.13374/j.issn2095-9389.2019.03.006
基金項目: 

國家重點基礎研究發展計劃資助項目 2011CB606300

詳細信息
    通訊作者:

    付華棟, E-mail: huadong.fu@163.com

  • 中圖分類號: TG132.27

Effect of Si content on hot deformation behavior and dynamic recrystallization of high silicon electrical steel

More Information
  • 摘要: 采用Gleeble-3800D熱模擬試驗機在應變量0.6、變形溫度750~1050℃、應變速率0.01~1 s-1工藝條件范圍內, 研究了Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼的熱變形與動態再結晶行為.采用線性回歸方法, 建立了三種成分實驗鋼的流變應力本構方程.計算得到Fe-5.5% Si、Fe-6.0% Si和Fe-6.5% Si高硅電工鋼的熱變形激活能分別為310.425、363.831和422.162 kJ·mol-1, 說明Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼的熱變形激活能隨Si質量分數的增加而增大, 這使得Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼相同條件下的變形抗力隨Si含量的升高而增大.采用金相截線法對不同成分和變形條件下實驗鋼的動態再結晶百分數進行了統計, 結果表明: 同一熱變形條件下, Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼的動態再結晶百分數隨Si質量分數的升高而減小.本文實驗條件下, 當變形溫度為750~850℃時, Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼軟化機制主要為動態回復; 而變形溫度為950~1050℃時, Fe-(5.5%、6.0%、6.5%) Si高硅電工鋼軟化機制主要為動態再結晶.

     

  • 圖  1  Fe-5.5%Si高硅電工鋼真應力-真應變曲線. (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1

    Figure  1.  True stress-true strain curves of Fe-5.5%Si high-silicon electrical steel: (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1

    圖  2  Fe-6.0%Si高硅電工鋼真應力-真應變曲線. (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1

    Figure  2.  True stress-true strain curves of Fe-6.0%Si high-silicon electrical steel: (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1

    圖  3  Fe-6.5%Si高硅電工鋼真應力-真應變曲線. (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1

    Figure  3.  True stress--true strain curves of Fe-6.5%Si high-silicon electrical steel: (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1

    圖  4  高硅電工鋼峰值應力σP隨Si質量分數及變形溫度T的變化趨勢圖. (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1

    Figure  4.  Variation of peak stress with Si content and deformation temperature T in high-silicon electrical steel: (a) $\dot \varepsilon $=0.01 s-1; (b) $\dot \varepsilon $=0.1 s-1; (c) $\dot \varepsilon $=1 s-1

    圖  5  Fe-5.5%Si高硅電工鋼峰值應力與應變速率的關系. $({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$

    Figure  5.  Relationship between peak stress and strain rate of Fe-5.5%Si high-silicon electrical steel: $({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$

    圖  6  Fe-6.0%Si高硅電工鋼峰值應力與應變速率的關系.$({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$

    Figure  6.  Relationship between peak stress and strain rate of Fe-6.0%Si high-silicon electrical steel: $({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$

    圖  7  Fe-6.5%Si高硅電工鋼峰值應力與應變速率的關系.$({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$

    Figure  7.  Relationship between peak stress and strain rate of Fe-6.5%Si high-silicon electrical steel: $({\rm{a}})\;\ln \dot \varepsilon - \ln {\sigma _{\rm{P}}};\;({\rm{b}})\;\ln \dot \varepsilon - {\sigma _{\rm{P}}};\;({\rm{c}})\;\ln \dot \varepsilon - \ln \sinh \left( {\alpha {\sigma _{\rm{P}}}} \right)$

    圖  8  高硅電工鋼峰值應力與變形溫度的關系. (a) Fe-5.5%Si; (b) Fe-6.0%Si; (c) Fe-6.5%Si

    Figure  8.  Relationship between peak stress and deformation temperature of high-silicon electrical steel: (a) Fe-5.5%Si; (b) Fe-6.0%Si; (c) Fe-6.5%Si

    圖  9  Fe- (5.5%、6.0%、6.5%) Si高硅電工鋼峰值應力與ln Z的關系. (a) Fe-5.5%Si; (b) Fe-6.0%Si; (c) Fe-6.5%Si

    Figure  9.  Relationship between peak stress and ln Z of Fe- (5.5%、6.0%、6.5%) Si high-silicon electrical steel: (a) Fe-5.5%Si; (b) Fe-6.0%Si; (c) Fe-6.5%Si

    圖  10  高硅電工鋼壓縮變形顯微組織$\left( {\dot \varepsilon = 0.01{{\rm{s}}^{ - 1}}} \right)$. (a) 5.5%Si, 850℃; (b) 5.5%Si, 950℃; (c) 6.0%Si, 850℃; (d) 6.0%Si, 950℃; (e) 6.5%Si, 850℃; (f) 6.5%Si, 950℃

    Figure  10.  Compression deformation microstructure of high-silicon electrical steel $\left( {\dot \varepsilon = 0.01{{\rm{s}}^{ - 1}}} \right)$: (a) 5.5%Si, 850℃; (b) 5.5%Si, 950℃; (c) 6.0%Si, 850℃; (d) 6.0%Si, 950℃; (e) 6.5%Si, 850℃; (f) 6.5%Si, 950℃

    圖  11  高硅電工鋼動態再結晶百分數(XDRX) 等高線分布圖. (a) Fe-5.5%Si; (b) Fe-6.0%Si; (c) Fe-6.5%Si

    Figure  11.  Contour maps of dynamic recrystallization percentage (XDRX) for high-silicon electrical steel: (a) Fe-5.5%Si; (b) Fe-6.0%Si; (c) Fe-6.5%Si

    表  1  高硅電工鋼的ασ計算值

    Table  1.   Calculated ασ value of high-silicon electrical steel

    試樣 $\dot \varepsilon $/s-1 750℃ 850℃ 950℃ 1050℃
    Fe-5.5.% Si 1 4.167 2.405 1.453 1.004
    0.1 3.306 1.500 0.857 0.514
    0.01 1.502 0.626 0.366 0.306
    Fe-6.0% Si 1 6.110 2.748 1.637 1.037
    0.1 4.248 2.377 1.163 0.838
    0.01 3.146 1.185 0.813 0.385
    Fe-6.5% Si 1 5.495 2.644 1.152 0.940
    0.1 3.942 1.492 0.962 0.481
    0.01 2.509 0.811 0.382 0.263
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xu H J, Xu Y B, Jiao H T, et al. Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5 wt% Si steel. J Magn Magn Mater, 2018, 453: 236 doi: 10.1016/j.jmmm.2018.01.036
    [2] Yu J H, Shin J S, Bae J S, et al. The effect of heat treatments and Si contents on B2 ordering reaction in high-silicon steels. Mater Sci Eng A, 2001, 307(1-2): 29 doi: 10.1016/S0921-5093(00)01960-2
    [3] Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5% Si steel sheet. J Magn Magn Mater, 1996, 160: 109 doi: 10.1016/0304-8853(96)00128-X
    [4] Li R, Shen Q, Zhang L M, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling. J Magn Magn Mater, 2004, 281(2-3): 135 doi: 10.1016/j.jmmm.2004.04.098
    [5] Liang Y F, Lin J P, Ye F, et al. Microstructure and mechanical properties of rapidly quenched Fe-6.5 wt. % Si alloy. J Alloys Compd, 2010, 504(Suppl 1): S476 http://www.sciencedirect.com/science/article/pii/S0925838810005566
    [6] Kasama A H, Bolfarini C, Kiminami C S, et al. Magnetic properties evaluation of spray formed and rolled Fe-6.5 wt. % Si-1.0 wt. % Al alloy. Mater Sci Eng A, 2007, 449-451: 375 doi: 10.1016/j.msea.2006.02.318
    [7] Lin J P, Zhong T B, Lin Z, et al. Fabrication of the sheets for Fe 3 Si based alloy. J Univ Sci Technol Beijing, 2001, 23(5): 442 doi: 10.3321/j.issn:1001-053X.2001.05.015

    林均品, 鐘太彬, 林志, 等. Fe3Si基合金板材的制備技術. 北京科技大學學報, 2001, 23(5): 442 doi: 10.3321/j.issn:1001-053X.2001.05.015
    [8] Ros-Ya?ez T, Houbaert Y, Fischer O, et al. Production of high silicon steel for electrical applications by thermomechanical processing. J Mater Process Technol, 2003, 141(1): 132 doi: 10.1016/S0924-0136(03)00247-4
    [9] Zhang B, Zhu L L, Wang K S, et al. High temperature plastic deformation behavior and constitutive equation of pure nickel. Chin J Rare Met, 2015, 39(5): 406 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201505004.htm

    張兵, 朱樂樂, 王快社, 等. 純鎳的高溫塑性變形行為及本構方程. 稀有金屬, 2015, 39(5): 406 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201505004.htm
    [10] Mo Y K, Zhang Z H, Xie J X, et al. Effect of recrystallization on the microstructure, ordering and mechanical properties of coldrolled high silicon electrical steel sheet. Acta Metall Sin, 2016, 52(11): 1363 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201611001.htm

    莫遠科, 張志豪, 謝建新, 等. 再結晶退火對高硅電工鋼冷軋帶材組織、有序結構和力學性能的影響. 金屬學報, 2016, 52(11): 1363 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201611001.htm
    [11] Yang H, Li Z H, Zhang Z L. Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi. J Zhejiang Univ SCI A, 2006, 7(8): 1453 doi: 10.1631/jzus.2006.A1453
    [12] Mirzadeh H, Najafizadeh A, Moazeney M. Flow curve analysis of 17-4 PH stainless steel under hot compression test. Metall Mater Trans A, 2009, 40(12): 2950 doi: 10.1007/s11661-009-0029-5
    [13] Chen L Q, Zhao Y, Xu X Q, et al. Dynamic recrystallization and precipitation behaviors of a kind of low carbon-microalloyed steel. Acta Metall Sin, 2010, 46(10): 1215 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201010010.htm

    陳禮清, 趙陽, 徐香秋, 等. 一種低碳釩微合金鋼的動態再結晶與析出行為. 金屬學報, 2010, 46(10): 1215 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201010010.htm
    [14] Mirzadeh H, Cabrera J M, Prado J M, et al. Hot deformation behavior of a medium carbon microalloyed steel. Mater Sci Eng A, 2011, 528(10-11): 3876 doi: 10.1016/j.msea.2011.01.098
    [15] Wei H L, Liu G Q. Hot deformation behavior of a medium carbon vanadium microalloyed steel based on constitutive analysis. Mater Sci Technol, 2014, 22(3): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201403011.htm

    魏海蓮, 劉國權. 基于本構分析的中碳釩微合金鋼熱變形行為. 材料科學與工藝, 2014, 22(3): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201403011.htm
    [16] He X, Zhang Y M, Song K X, et al. Study on hot deformation behaviors of Cu-Be-Co alloy. J Plast Eng, 2015, 22(2): 105 doi: 10.3969/j.issn.1007-2012.2015.02.019

    何霞, 張彥敏, 宋克興, 等. Cu-0.23Be-0.84Co合金熱變形行為. 塑性工程學報, 2015, 22(2): 105 doi: 10.3969/j.issn.1007-2012.2015.02.019
    [17] Sellars C M, McTegart W J. On the mechanism of hot deformation. Acta Metall, 1966, 14(9): 1136 doi: 10.1016/0001-6160(66)90207-0
    [18] Shin J S, Bae J S, Kim H J, et al. Ordering-disordering phenomena and micro-hardness characteristics of B2 phase in Fe-(5-6.5%) Si alloys. Mater Sci Eng A, 2005, 407(1-2): 282 doi: 10.1016/j.msea.2005.07.012
    [19] Medina S F, Hernandez C A. General expression of the ZenerHollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Mater, 1996, 44(1): 137 doi: 10.1016/1359-6454(95)00151-0
  • 加載中
圖(11) / 表(1)
計量
  • 文章訪問數:  1346
  • HTML全文瀏覽量:  620
  • PDF下載量:  97
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-05-29
  • 刊出日期:  2019-03-20

目錄

    /

    返回文章
    返回