Effect of dislocation multiplication in intercritical region on microstructure and properties of low-carbon bainite/ferrite multiphase steel
-
摘要: 利用掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM)、電子探針(EPMA)、X射線衍射儀(XRD)、室溫拉伸等手段, 通過兩相區保溫-淬火(IQ)、兩相區形變后保溫-淬火(DIQ)、兩相區保溫-淬火-配分-貝氏體區等溫(IQ&PB)及兩相區形變后保溫-淬火-配分-貝氏體區等溫(DIQ&PB)熱處理工藝, 研究高溫形變對室溫組織、性能、殘余奧氏體穩定性的綜合影響作用.結果表明, 經15%的壓縮形變后鐵素體中位錯密度由0.290×1014增加至1.286×1014 m-2, 馬氏體(原奧氏體)中C、Cu元素富集濃度提高, 高溫形變產生位錯增殖對元素配分有明顯促進作用.DIQ&PB工藝下, 形變后貝氏體板條尺寸變短且寬度增加0.1 μm左右, 貝氏體轉變量較未變形時增加14%, 多邊形鐵素體尺寸明顯減小.力學性能方面, 兩相區形變熱處理后抗拉強度增加132.85 MPa, 斷后伸長率增加7%, 強塑積可達25435 MPa·%.形變后殘余奧氏體體積分數由7.8%提高到8.99%, 殘余奧氏體中碳質量分數由1.05%提高到1.31%.
-
關鍵詞:
- 兩相區保溫-淬火-配分-貝氏體區等溫工藝 /
- 兩相區形變 /
- 位錯增殖 /
- 殘余奧氏體 /
- 強塑積
Abstract: Hot deformation is a way to effectively improve strength and plasticity of multiphase steels simultaneously, thereby, improving mechanical properties of multiphase steels. Hot deformation affects martensitic transformation mechanism, microstructure, and mechanical properties because it increases retained austenite content and improves stability of multiphase steels. Moreover, hot deformation plays a role in dislocation multiplication, and fine grain strengthening; it can reduce bainite transformation driving force, reduce bainite transformation point, and result in small multiphase organization after quenching-partitioning process. The result can significantly improve the properties of materials. The effects of high-temperature deformation on the stability of room-temperature microstructure, mechanical property, and retained austenite under treatment of IQ&PB (intercritical annealing-quenching and partitioning within the bainitic region) and DIQ&PB (intercritical deformation-intercritical annealing-quenching and partitioning within the bainitic region) processes were studied using scanning electron microscopy (SEM), transmission electron microscope (TEM), electron probe X-ray microanalyser (EPMA), X-ray diffraction (XRD), and tensile testing machine. The results show that dislocation density increases from 0.290×1014 to 1.286×1014 m-2 after 15% compression deformation, and the respective concentrations of C and Cu element enrichment in martensite (the original austenite) increases. Overall, dislocation multiplication produced by high-temperature deformation significantly promotes elemental distribution. After the deformation, the size of bainite lath shortenes and its width increases by 0.1 μm, the volume of the bainite transition increased by 14%, and the size of the polygonal ferrite significantly decreases under the DIQ&PB treatment. In terms of mechanical properties, the tensile strength increases by 132.85 MPa, and the elongation increases by 7%; the strength and ductility product reaches 25435 MPa·% after intercritical deformation heat treatment. The volume fraction of retained austenite increases from 7.8% to 8.99%, and the mass fraction of carbon in the retained austenite increases from 1.05% to 1.31% after compression deformation. -
表 1 實驗用鋼的化學成分(質量分數)
Table 1. Chemical composition of experimental steel ?
% C Si Mn Cu Ni P S B 0.18 1.58 2.06 0.41 0.33 0.008 0.005 0.0017 表 2 不同熱處理工藝下的位錯密度
Table 2. Measurement results of dislocation density under different heat treatment processes
工藝 位錯密度/(1014 m-2) 視場1 視場2 視場3 視場4 視場5 平均 IQ 0.245 0.296 0.278 0.218 0.412 0.290 DIQ 1.289 1.381 1.357 1.257 1.146 1.286 表 3 IQ&PB與DIQ&PB工藝的力學性能
Table 3. Mechanical properties of experimental steel under IQ&PB and DIQ&PB treatment processes
熱處理工藝 最大抗拉強度/MPa 斷后伸長率/% 殘余奧氏體體積分數/% 殘余奧氏體中碳質量分數/% 強塑積/(MPa·%) IQ&PB 1078.36 14 7.80 1.05 14994 DIQ&PB 1211.21 21 8.99 1.31 25435 259luxu-164 -
參考文獻
[1] Li C N, Ji F Q, Yuan G, et al. The impact of thermo-mechanical controlled processing on structure-property relationship and strain hardening behavior in dual-phase steels. Mater Sci Eng A, 2016, 662: 100 doi: 10.1016/j.msea.2016.03.055 [2] Xie P, Han M, Wu C L, et al. A high-performance TRIP steel enhanced by ultrafine grains and hardening precipitates. Mater Des, 2017, 127: 1 doi: 10.1016/j.matdes.2017.04.063 [3] Xie Z J, Shang C J, Zhou W H, et al. Effect of retained austenite on ductility and toughness of a low alloyed multiphase steel. Acta Metall Sin, 2016, 52(2): 224 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201602013.htm謝振家, 尚成嘉, 周文浩, 等. 低合金多相鋼中殘余奧氏體對塑性和韌性的影響. 金屬學報, 2016, 52(2): 224 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201602013.htm [4] Rong Y H, Chen N L. The principle and mechanism of enhancement of both strength and ductility of martensitic steels by carbon. Acta Metall Sin, 2017, 53(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201701001.htm戎詠華, 陳乃錄. C同時提高馬氏體鋼強度和塑性的原理和機制. 金屬學報, 2017, 53(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201701001.htm [5] Sanz L, Pereda B, López B. Effect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb. Mater Sci Eng A, 2017, 685: 377 doi: 10.1016/j.msea.2017.01.014 [6] Kong X W, Lan L Y, Hu Z Y, et al. Optimization of mechanical properties of high strength bainitic steel using thermo-mechanical control and accelerated cooling process. J Mater Process Technol, 2015, 217: 202 doi: 10.1016/j.jmatprotec.2014.11.016 [7] Speer J G, Matlock D K. Developments in the quenching and partitioning process. World Iron Steel, 2009, 9(1): 31 [8] Li Z, Zhao A M, Tang D, et al. Annealing processing parameters and microstructure evolution of hot-rolled low carbon medium-manganese TRIP steels. J Univ Sci Technol Beijing, 2012, 34(2): 132 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201202003.htm李振, 趙愛民, 唐荻, 等. 低碳中錳熱軋TRIP鋼退火工藝及組織演變. 北京科技大學學報, 2012, 34(2): 132 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201202003.htm [9] Chen L S, Zhang J Y, Tian Y Q, et al. Effect of pretreated microstructure on the morphology and mechanical properties of low-carbon steel with IQ&P treatment. Chin J Eng, 2016, 38(2): 223陳連生, 張健楊, 田亞強, 等. 預處理組織對低碳鋼IQ&P工藝下組織及性能影響. 工程科學學報, 2016, 38(2): 223 [10] Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A, 2006, 441(1-2): 1 doi: 10.1016/j.msea.2006.08.095 [11] Rajasekhara S, Ferreira P J, Karjalainen L P, et al. Hall-Petchbehavior in ultra-fine-grained AISI 301LN stainless steel. Metall Mater Trans A, 2007, 38(6): 1202 doi: 10.1007/s11661-007-9143-4 [12] Ma Y Q, Jin J E, Lee Y K. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Mater, 2005, 52(12): 1311 doi: 10.1016/j.scriptamat.2005.02.018 [13] Liu H P, Jin X J, Dong H, et al. Martensitic microstructural transformations from the hot stamping, quenching and partitioning process. Mater Charact, 2011, 62(2): 223 doi: 10.1016/j.matchar.2010.12.003 [14] Liu H P. Study on High Strength and Elongation Steels Treated by Hot Deformation & QP Process[Dissertation〗. Shanghai: Shanghai Jiao Tong University, 2011劉和平. 高強塑積熱變形淬火碳分配鋼的研究[學位論文〗. 上海: 上海交通大學, 2011 [15] Wang C Y, Chang Y, Yang J, et al. The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel. Acta Metall Sin, 2015, 51(8): 913 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201508003.htm王存宇, 常穎, 楊潔, 等. 熱變形和淬火配分處理的復合作用對低碳合金鋼馬氏體相變機制的影響. 金屬學報, 2015, 51(8): 913 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201508003.htm [16] Jing C N, Wang Z C. The action of alloy element in transformation-induced plasticity steel. Mater Rev, 2004, 18(11): 36 doi: 10.3321/j.issn:1005-023X.2004.11.012景財年, 王作成. 合金元素在相變誘發塑性鋼中的作用. 材料導報, 2004, 18(11): 36 doi: 10.3321/j.issn:1005-023X.2004.11.012 [17] Yan S, Liu X H, Liu W J, et al. Microstructure, mechanical properties and strengthening mechanisms of a Cu bearing low-carbon steel treated by Q&P process. Acta Metall Sin, 2013, 49(8): 917閆述, 劉相華, 劉偉杰, 等. 含Cu低碳鋼Q&P工藝處理的組織性能與強化機理. 金屬學報, 2013, 49(8): 917 [18] Li Y J, Li X L, Yuan G, et al. Microstructure and partitioning behavior characteristics in low carbon steels treated by hot-rolling direct quenching and dynamical partitioning processes. Mater Charact, 2016, 121: 157 doi: 10.1016/j.matchar.2016.10.005 [19] Kostka A, Tak K G, Hellmig R J, et al. On the contribution of carbides and micro-grain boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater, 2007, 55(2): 539 doi: 10.1016/j.actamat.2006.08.046 [20] Aghajani A, Eggeler G, Raabe D. Evolution of Microstructure during Long-term Creep of A Tempered Martensite Ferritic Steel[Dissertation〗. Ruhr-University Bochum, Bochum, 2009 [21] Xia Y, Yang Z G, Li Z D, et al. Effect of hot deformation on kinetics of γ→α transformation in a Fe-0.2C-2Mn alloy and related theoretical analyses. Acta Metall Sin, 2012, 48(3): 271 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201203005.htm夏苑, 楊志剛, 李昭東, 等. 熱變形對Fe-0.2C-2Mn合金γ→α轉變動力學的影響及理論探討. 金屬學報, 2012, 48(3): 271 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201203005.htm [22] Beladi H, Timokhina I B, Xiong X Y, et al. A novel thermomechanical approach to produce a fine ferrite and low-temperature bainitic composite microstructure. Acta Mater, 2013, 61(19): 7240 doi: 10.1016/j.actamat.2013.08.029 [23] Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater, 2013, 68(5): 321 doi: 10.1016/j.scriptamat.2012.11.003 [24] De Knijf D, Petrov R, F?jer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel. Mater Sci Eng A, 2014, 615: 107 doi: 10.1016/j.msea.2014.07.054 -