<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

兩相區位錯增殖對低碳貝氏體/鐵素體復相鋼組織和性能的影響

田亞強 田耕 王安東 鄭小平 魏英立 宋進英 陳連生

田亞強, 田耕, 王安東, 鄭小平, 魏英立, 宋進英, 陳連生. 兩相區位錯增殖對低碳貝氏體/鐵素體復相鋼組織和性能的影響[J]. 工程科學學報, 2019, 41(3): 325-331. doi: 10.13374/j.issn2095-9389.2019.03.005
引用本文: 田亞強, 田耕, 王安東, 鄭小平, 魏英立, 宋進英, 陳連生. 兩相區位錯增殖對低碳貝氏體/鐵素體復相鋼組織和性能的影響[J]. 工程科學學報, 2019, 41(3): 325-331. doi: 10.13374/j.issn2095-9389.2019.03.005
TIAN Ya-qiang, TIAN Geng, WANG An-dong, ZHENG Xiao-ping, WEI Ying-li, SONG Jin-ying, CHEN Lian-sheng. Effect of dislocation multiplication in intercritical region on microstructure and properties of low-carbon bainite/ferrite multiphase steel[J]. Chinese Journal of Engineering, 2019, 41(3): 325-331. doi: 10.13374/j.issn2095-9389.2019.03.005
Citation: TIAN Ya-qiang, TIAN Geng, WANG An-dong, ZHENG Xiao-ping, WEI Ying-li, SONG Jin-ying, CHEN Lian-sheng. Effect of dislocation multiplication in intercritical region on microstructure and properties of low-carbon bainite/ferrite multiphase steel[J]. Chinese Journal of Engineering, 2019, 41(3): 325-331. doi: 10.13374/j.issn2095-9389.2019.03.005

兩相區位錯增殖對低碳貝氏體/鐵素體復相鋼組織和性能的影響

doi: 10.13374/j.issn2095-9389.2019.03.005
基金項目: 

國家自然科學基金資助項目 51574107

河北省自然科學基金資助項目 E2016209048

河北省自然科學基金資助項目 E2017209048

河北省高等學校科學技術研究資助項目 QN2016185

唐山市科技創新團隊培養計劃資助項目 15130202C

詳細信息
    通訊作者:

    陳連生, E-mail: zyzx@ncst.edu.cn

  • 中圖分類號: TG142.2

Effect of dislocation multiplication in intercritical region on microstructure and properties of low-carbon bainite/ferrite multiphase steel

More Information
  • 摘要: 利用掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM)、電子探針(EPMA)、X射線衍射儀(XRD)、室溫拉伸等手段, 通過兩相區保溫-淬火(IQ)、兩相區形變后保溫-淬火(DIQ)、兩相區保溫-淬火-配分-貝氏體區等溫(IQ&PB)及兩相區形變后保溫-淬火-配分-貝氏體區等溫(DIQ&PB)熱處理工藝, 研究高溫形變對室溫組織、性能、殘余奧氏體穩定性的綜合影響作用.結果表明, 經15%的壓縮形變后鐵素體中位錯密度由0.290×1014增加至1.286×1014 m-2, 馬氏體(原奧氏體)中C、Cu元素富集濃度提高, 高溫形變產生位錯增殖對元素配分有明顯促進作用.DIQ&PB工藝下, 形變后貝氏體板條尺寸變短且寬度增加0.1 μm左右, 貝氏體轉變量較未變形時增加14%, 多邊形鐵素體尺寸明顯減小.力學性能方面, 兩相區形變熱處理后抗拉強度增加132.85 MPa, 斷后伸長率增加7%, 強塑積可達25435 MPa·%.形變后殘余奧氏體體積分數由7.8%提高到8.99%, 殘余奧氏體中碳質量分數由1.05%提高到1.31%.

     

  • 圖  1  工藝流程圖. (a) 兩相區保溫-淬火工藝; (b) 兩相區形變后保溫-淬火工藝; (c) 兩相區保溫-淬火-配分-貝氏體區等溫工藝; (d) 兩相區形變后保溫-淬火-配分-貝氏體區等溫工藝

    Figure  1.  Schematic diagram of heat treatment processes: (a) IQ; (b) DIQ; (c) IQ&PB; (d) DIQ&PB

    圖  2  熱處理后試樣透射電鏡照片. (a) IQ工藝; (b) DIQ工藝

    Figure  2.  TEM images of experimental steels: (a) IQ process; (b) DIQ process

    圖  3  IQ與DIQ工藝熱處理后的電子探針圖像. (a、d) 顯微形貌; (b、e) C元素分布情況; (c、f) Cu元素分布

    Figure  3.  EPMA scanning images of experimental steels treated using IQ and DIQ: (a, d) microstructure; (b, e) C element distribution; (c, f) Cu ele-ment distribution

    圖  4  IQ&PB工藝處理后顯微組織照片. (a, b) IQ&PB工藝; (c, d) DIQ&PB工藝

    Figure  4.  Microstructure images under IQ&PB treatment process: (a, b) IQ&PB process; (c, d) DIQ&PB process

    圖  5  IQ&PB與DIQ&PB工藝處理后的X射線圖譜

    Figure  5.  XRD patterns of experimental steels treated using IQ&PB and DIQ&PB

    圖  6  IQ&PB與DIQ&PB工藝處理后的應力-應變曲線

    Figure  6.  Engineering stress-strain curves of experimental steels treated using IQ&PB and DIQ&PB

    圖  7  DIQ&PB工藝處理后距離端口不同位置的X射線衍射能譜圖

    Figure  7.  XRD patterns of different positions from fracture for experimental steel treated using DIQ&PB

    表  1  實驗用鋼的化學成分(質量分數)

    Table  1.   Chemical composition of experimental steel ?%

    C Si Mn Cu Ni P S B
    0.18 1.58 2.06 0.41 0.33 0.008 0.005 0.0017
    下載: 導出CSV

    表  2  不同熱處理工藝下的位錯密度

    Table  2.   Measurement results of dislocation density under different heat treatment processes

    工藝 位錯密度/(1014 m-2)
    視場1 視場2 視場3 視場4 視場5 平均
    IQ 0.245 0.296 0.278 0.218 0.412 0.290
    DIQ 1.289 1.381 1.357 1.257 1.146 1.286
    下載: 導出CSV

    表  3  IQ&PB與DIQ&PB工藝的力學性能

    Table  3.   Mechanical properties of experimental steel under IQ&PB and DIQ&PB treatment processes

    熱處理工藝 最大抗拉強度/MPa 斷后伸長率/% 殘余奧氏體體積分數/% 殘余奧氏體中碳質量分數/% 強塑積/(MPa·%)
    IQ&PB 1078.36 14 7.80 1.05 14994
    DIQ&PB 1211.21 21 8.99 1.31 25435
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li C N, Ji F Q, Yuan G, et al. The impact of thermo-mechanical controlled processing on structure-property relationship and strain hardening behavior in dual-phase steels. Mater Sci Eng A, 2016, 662: 100 doi: 10.1016/j.msea.2016.03.055
    [2] Xie P, Han M, Wu C L, et al. A high-performance TRIP steel enhanced by ultrafine grains and hardening precipitates. Mater Des, 2017, 127: 1 doi: 10.1016/j.matdes.2017.04.063
    [3] Xie Z J, Shang C J, Zhou W H, et al. Effect of retained austenite on ductility and toughness of a low alloyed multiphase steel. Acta Metall Sin, 2016, 52(2): 224 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201602013.htm

    謝振家, 尚成嘉, 周文浩, 等. 低合金多相鋼中殘余奧氏體對塑性和韌性的影響. 金屬學報, 2016, 52(2): 224 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201602013.htm
    [4] Rong Y H, Chen N L. The principle and mechanism of enhancement of both strength and ductility of martensitic steels by carbon. Acta Metall Sin, 2017, 53(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201701001.htm

    戎詠華, 陳乃錄. C同時提高馬氏體鋼強度和塑性的原理和機制. 金屬學報, 2017, 53(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201701001.htm
    [5] Sanz L, Pereda B, López B. Effect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb. Mater Sci Eng A, 2017, 685: 377 doi: 10.1016/j.msea.2017.01.014
    [6] Kong X W, Lan L Y, Hu Z Y, et al. Optimization of mechanical properties of high strength bainitic steel using thermo-mechanical control and accelerated cooling process. J Mater Process Technol, 2015, 217: 202 doi: 10.1016/j.jmatprotec.2014.11.016
    [7] Speer J G, Matlock D K. Developments in the quenching and partitioning process. World Iron Steel, 2009, 9(1): 31
    [8] Li Z, Zhao A M, Tang D, et al. Annealing processing parameters and microstructure evolution of hot-rolled low carbon medium-manganese TRIP steels. J Univ Sci Technol Beijing, 2012, 34(2): 132 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201202003.htm

    李振, 趙愛民, 唐荻, 等. 低碳中錳熱軋TRIP鋼退火工藝及組織演變. 北京科技大學學報, 2012, 34(2): 132 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201202003.htm
    [9] Chen L S, Zhang J Y, Tian Y Q, et al. Effect of pretreated microstructure on the morphology and mechanical properties of low-carbon steel with IQ&P treatment. Chin J Eng, 2016, 38(2): 223

    陳連生, 張健楊, 田亞強, 等. 預處理組織對低碳鋼IQ&P工藝下組織及性能影響. 工程科學學報, 2016, 38(2): 223
    [10] Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A, 2006, 441(1-2): 1 doi: 10.1016/j.msea.2006.08.095
    [11] Rajasekhara S, Ferreira P J, Karjalainen L P, et al. Hall-Petchbehavior in ultra-fine-grained AISI 301LN stainless steel. Metall Mater Trans A, 2007, 38(6): 1202 doi: 10.1007/s11661-007-9143-4
    [12] Ma Y Q, Jin J E, Lee Y K. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Mater, 2005, 52(12): 1311 doi: 10.1016/j.scriptamat.2005.02.018
    [13] Liu H P, Jin X J, Dong H, et al. Martensitic microstructural transformations from the hot stamping, quenching and partitioning process. Mater Charact, 2011, 62(2): 223 doi: 10.1016/j.matchar.2010.12.003
    [14] Liu H P. Study on High Strength and Elongation Steels Treated by Hot Deformation & QP Process[Dissertation〗. Shanghai: Shanghai Jiao Tong University, 2011

    劉和平. 高強塑積熱變形淬火碳分配鋼的研究[學位論文〗. 上海: 上海交通大學, 2011
    [15] Wang C Y, Chang Y, Yang J, et al. The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel. Acta Metall Sin, 2015, 51(8): 913 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201508003.htm

    王存宇, 常穎, 楊潔, 等. 熱變形和淬火配分處理的復合作用對低碳合金鋼馬氏體相變機制的影響. 金屬學報, 2015, 51(8): 913 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201508003.htm
    [16] Jing C N, Wang Z C. The action of alloy element in transformation-induced plasticity steel. Mater Rev, 2004, 18(11): 36 doi: 10.3321/j.issn:1005-023X.2004.11.012

    景財年, 王作成. 合金元素在相變誘發塑性鋼中的作用. 材料導報, 2004, 18(11): 36 doi: 10.3321/j.issn:1005-023X.2004.11.012
    [17] Yan S, Liu X H, Liu W J, et al. Microstructure, mechanical properties and strengthening mechanisms of a Cu bearing low-carbon steel treated by Q&P process. Acta Metall Sin, 2013, 49(8): 917

    閆述, 劉相華, 劉偉杰, 等. 含Cu低碳鋼Q&P工藝處理的組織性能與強化機理. 金屬學報, 2013, 49(8): 917
    [18] Li Y J, Li X L, Yuan G, et al. Microstructure and partitioning behavior characteristics in low carbon steels treated by hot-rolling direct quenching and dynamical partitioning processes. Mater Charact, 2016, 121: 157 doi: 10.1016/j.matchar.2016.10.005
    [19] Kostka A, Tak K G, Hellmig R J, et al. On the contribution of carbides and micro-grain boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater, 2007, 55(2): 539 doi: 10.1016/j.actamat.2006.08.046
    [20] Aghajani A, Eggeler G, Raabe D. Evolution of Microstructure during Long-term Creep of A Tempered Martensite Ferritic Steel[Dissertation〗. Ruhr-University Bochum, Bochum, 2009
    [21] Xia Y, Yang Z G, Li Z D, et al. Effect of hot deformation on kinetics of γ→α transformation in a Fe-0.2C-2Mn alloy and related theoretical analyses. Acta Metall Sin, 2012, 48(3): 271 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201203005.htm

    夏苑, 楊志剛, 李昭東, 等. 熱變形對Fe-0.2C-2Mn合金γ→α轉變動力學的影響及理論探討. 金屬學報, 2012, 48(3): 271 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201203005.htm
    [22] Beladi H, Timokhina I B, Xiong X Y, et al. A novel thermomechanical approach to produce a fine ferrite and low-temperature bainitic composite microstructure. Acta Mater, 2013, 61(19): 7240 doi: 10.1016/j.actamat.2013.08.029
    [23] Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater, 2013, 68(5): 321 doi: 10.1016/j.scriptamat.2012.11.003
    [24] De Knijf D, Petrov R, F?jer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel. Mater Sci Eng A, 2014, 615: 107 doi: 10.1016/j.msea.2014.07.054
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  894
  • HTML全文瀏覽量:  478
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-07-11
  • 刊出日期:  2019-03-20

目錄

    /

    返回文章
    返回