<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鹵化物鈣鈦礦量子點0D-2D混合維度異質結構光探測器的研究進展及挑戰

康卓 吳華林 司浩楠 張躍

康卓, 吳華林, 司浩楠, 張躍. 鹵化物鈣鈦礦量子點0D-2D混合維度異質結構光探測器的研究進展及挑戰[J]. 工程科學學報, 2019, 41(3): 279-291. doi: 10.13374/j.issn2095-9389.2019.03.001
引用本文: 康卓, 吳華林, 司浩楠, 張躍. 鹵化物鈣鈦礦量子點0D-2D混合維度異質結構光探測器的研究進展及挑戰[J]. 工程科學學報, 2019, 41(3): 279-291. doi: 10.13374/j.issn2095-9389.2019.03.001
KANG Zhuo, WU Hua-lin, SI Hao-nan, ZHANG Yue. Halide perovskite quantum dot based 0D-2D mixed-dimensional heterostructure photodetectors: progress and challenges[J]. Chinese Journal of Engineering, 2019, 41(3): 279-291. doi: 10.13374/j.issn2095-9389.2019.03.001
Citation: KANG Zhuo, WU Hua-lin, SI Hao-nan, ZHANG Yue. Halide perovskite quantum dot based 0D-2D mixed-dimensional heterostructure photodetectors: progress and challenges[J]. Chinese Journal of Engineering, 2019, 41(3): 279-291. doi: 10.13374/j.issn2095-9389.2019.03.001

鹵化物鈣鈦礦量子點0D-2D混合維度異質結構光探測器的研究進展及挑戰

doi: 10.13374/j.issn2095-9389.2019.03.001
基金項目: 

國家重點研究開發計劃資助項目 2016YFA0202701

國家自然科學基金資助項目 51527802

國家自然科學基金資助項目 51232001

國家自然科學基金資助項目 51702014

國家自然科學基金資助項目 51372020

國家自然科學基金資助項目 51602020

中央高校基本科研業務費資助項目 FRF-AS-17-002

詳細信息
    通訊作者:

    張躍, E-mail: yuezhang@ustb.edu.cn

  • 中圖分類號: TB34

Halide perovskite quantum dot based 0D-2D mixed-dimensional heterostructure photodetectors: progress and challenges

More Information
  • 摘要: 綜述了多晶鹵化物鈣鈦礦薄膜的局限性, 鹵化物鈣鈦礦量子點的基本光學性質和制備方法, 以及在光電探測器方面的器件結構研究進展, 并重點介紹了應用在0D-2D混合維度異質結基光電晶體管器件的突破, 包括界面載流子行為和高性能光探測器的構建.最后, 總結了鹵化物鈣鈦礦量子點作為未來商業化應用的光電子器件和電子器件的候選材料所面臨的主要問題和挑戰, 譬如化學不穩定性、鉛毒性問題、量子點與其他材料間界面高效電荷傳輸等問題, 并提出了解決思路和方法.這為設計和推進高性能、高穩定性鹵化物鈣鈦礦量子點基光電功能化器件的商業化應用指明了方向.

     

  • 圖  1  多晶鈣鈦礦薄膜基本結構及其局限性. (a) 典型鈣鈦礦結構; (b) 平面鈣鈦礦光伏結構; (c) 器件在正向極化和反向極化下的光電流; (d) 碘空位(VI) 和(e) 甲胺空位(VMA) 遷移路徑; (f) 鈣鈦礦薄膜的原子力顯微鏡形貌; 導電原子力顯微鏡測得鈣鈦礦晶界電流(g) 和晶粒內電流(h)

    Figure  1.  Typical structure and limitations of polycrystalline perovskite thin films: (a) typical perovskite crystal structure; (b) schematic of the lateral structure photovoltaic devices; (c) hysteresis of photocurrents under negative and positive poling; defects diffusion or ion migration paths for vacan-cies VI (d) and VMA (e); (f) AFM topography image of the perovskite film; local current measured in grain boundary (g) and grain (h) in Fig. (f)

    圖  2  鈣鈦礦量子點的制備方法及帶隙可調. (a) 配體輔助沉淀法; (b) 熱注入法; (c) 模板法; (d) 發光峰位可調

    Figure  2.  Methods of perovskite nanodots synthesis: (a) ligand-assisted reprecipitation; (b) hot injection; (c) SiO2mesoporous template; (d) bandgap tunability

    圖  3  (a) 平面MSM結構的CsPbBr3納米薄膜光探測器; (b) CsPbBr3納米薄膜光探測器的I-V曲線; (c) CsPbX3量子點在日光和UV光照下的照片及與Si納米線形成異質結結構示意圖; (d) CsPbX3量子點/Si納米線的吸收譜和在300 nm和510 nm處的吸收強度分布

    Figure  3.  (a) Schematic of device construction and carrier transportation; (b) current-voltage (I-V) logarithm curves of the photodetector under dif-ferent powers; (c) images of the CsPbX3 QDs solution illuminated under sunlight/UV light and a 3D schematic illustration of the junction structure constructed upon SiNWs; (d) normalized PL and absorption spectra of CsPbBr3 QDs, with a simulation distribution profile of absorption intensity at300 nm and 510 nm

    圖  4  鈣鈦礦基光電場效應晶體管器件. (a) MAPbI3鈣鈦礦薄膜光電晶體管示意圖; (b) 鈣鈦礦薄膜的原子力顯微鏡形貌, 插圖為3D形貌結構圖; (c) 鈣鈦礦光電晶體管的光響應性能; (d) 鈣鈦礦/CNTs復合結構中的電荷傳輸示意圖; (e) 鈣鈦礦/CNTs光電晶體管結構示意圖; (f) 輸出特性曲線; (g) 鈣鈦礦/石墨烯光電晶體管結構示意圖; (h) 光響應和外量子效率; (i) CsPbBr3/Mo S2混合光電晶體管結構示意圖

    Figure  4.  Perovskite-based photoelectric field effect transistor devices: (a) schematic of the MAPb I3phototransistor; (b) AFM height image and the corresponding 3D topographic image of the perovskite fllm; (c) photoresponsivity of the perovskite phototransistor; (d) schematic of the fast carrier transport in perovskite/CNTs hybrid structure; (e) schematic of the perovskite/CNTs phototransistor; (f) output characteristics; (g) schematic of the perovskite-graphene hybrid phototransistor; (h) photoresponsivity (R) and external quantum efflciency (EQE) characteristics of the device; (i) schematic of the CsPbBr3/Mo S2hybrid structure

    圖  5  0D-2D混合維度范德華異質結中界面電荷行為調控和表征. (a) 兩種鈣鈦礦量子點/Mo S20D-2D混合維度異質結示意圖; (b) 兩種異質結的時間分辨光致發光譜; Type-Ⅰ (c) 和type-Ⅱ (d) 異質結中的熒光強度及熒光壽命成像; (e) 鈣鈦礦量子點/Mo S2混合維度光電晶體管示意圖; (f) Type-Ⅱ型光電晶體管在不同光功率下的轉移特性曲線, 插圖為閾值電壓變化值隨功率變化關系; (g) 不同功率下光響應性能曲線

    Figure  5.  Interfacial charge behavior modulation and characterization in the 0D-2D mixed-dimensional van der Waals heterostructures (MvdWHs) : (a) schematic model of the two types of perovskite quantum dots-monolayer Mo S20D-2D MvdWHs; (b) time-resolved photoluminescence spectroscopy; Fluorescence intensity and fluorescence lifetime mapping of images for type-Ⅰ (c) and type-Ⅱ (d) Mvd WHs excited by 483 nm laser; (e) schematic model of the phototransistor devices with an optical image in its inset; (f) transfer curves for the type-ⅡMvdWH-based phototransistor at different il-lumination powers, inset showing the shift of the threshold voltage vs effcient illumination powers; (g) responsivity (R) at each gate voltage vs effcient illumination powers

    圖  6  0D-2D混合維度光電晶體管型光探測器. (a) CsPbBr3-xIx納米晶-石墨烯混合光電晶體管示意圖; (b) 光照下的能帶結構示意圖; (c) CsPbBr3-xIx納米晶-石墨烯混合光電晶體管轉移特性曲線; (d) 全無機鈣鈦礦量子點-Mo S2混合光電晶體管示意圖; (e) 異質結的熒光壽命成像圖; (f) 時間分辨光致發光譜; (g) 閾值電壓改變值隨功率變化關系; (h) 開態下(柵壓VG > 閾值電壓Vt) 溝道電流傳輸機制及能帶結構示意圖; (i) 不同功率下器件的光響應度、探測極限及外量子效率

    Figure  6.  Photodetectors based on 0D-2D mixed-dimensional phototransistor: (a) schematic model of the CsPbBr3-xIx NCs-graphene phototransistor; (b) energy diagrams of the CsPbBr3-xIx NCs-graphene heterostructure under illumination; (c) transfer curve for the CsPbBr3-xIx NCs-graphene phototransistor; (d) schematic of the all-inorganic perovskite CsPbI3-xBrx QDs-MoS2monolayer mixed-dimensional phototransistor; (e) fluorescence lifetime image mapping of the mixed-dimensional herterostructure; (f) time-resolved photoluminescence spectroscopy of the mixed-dimensional herterostructure; (g) shift of the threshold voltage (ΔVth) as a function of effective illumination power; (h) schematic illustration of the channel current transport mechanism and energy band diagram of the phototransistor at on-state (VG > Vt); (i) responsivity (R) and specific detectivity (D*), with an inset showing the EQE as a function of illumination power

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Weber D. CH3 NH3 PbX3, ein Pb(Ⅱ)-system mit kubischer perowskitstruktur/CH3 NH3 PbX3, a Pb(Ⅱ)-system with cubic perovskite structure. Z Naturforsch B Chem Sci, 1978, 33(12): 1443 doi: 10.1515/znb-1978-1214
    [2] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17): 6050 doi: 10.1021/ja809598r
    [3] Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234 doi: 10.1126/science.aaa9272
    [4] McMeekin D P, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351(6269): 151 doi: 10.1126/science.aad5845
    [5] Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358(6364): 768 doi: 10.1126/science.aam5655
    [6] Correa-Baena J P, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739 doi: 10.1126/science.aam6323
    [7] Stolterfoht M, Wolff C M, Márquez J A, et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat Energy, 2018, 3(10): 847 doi: 10.1038/s41560-018-0219-8
    [8] Jiang Y Z, Yuan J, Ni Y X, et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2018, 2(7): 1356 doi: 10.1016/j.joule.2018.05.004
    [9] Jeon N J, Na H, Jung E H, et al. A fluorene-terminated holetransporting material for highly efficient and stable perovskite solar cells. Nat Energy, 2018, 3(8): 682 doi: 10.1038/s41560-018-0200-6
    [10] Chen H, Ye F, Tang W T, et al. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 550(7674): 92 doi: 10.1038/nature23877
    [11] Li X, Bi D Q, Yi C Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353(6294): 58 doi: 10.1126/science.aaf8060
    [12] Huang J S, Yuan Y B, Shao Y C, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater, 2017, 2(7): 17042 doi: 10.1038/natrevmats.2017.42
    [13] Brenner T M, Egger D A, Kronik L, et al. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater, 2016, 1(1): 15007 doi: 10.1038/natrevmats.2015.7
    [14] Green M A, Jiang Y J, Soufiani A M, et al. Optical properties of photovoltaic organic-inorganic lead halide perovskites. J Phys Chem Lett, 2015, 6(23): 4774 doi: 10.1021/acs.jpclett.5b01865
    [15] Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175μm in solution grown CH3 NH3 PbI3 single crystals. Science, 2015, 347(6225): 967 doi: 10.1126/science.aaa5760
    [16] Xing G C, Mathews N, Sun S Y, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3 NH3 PbI3. Science, 2013, 342(6156): 344 doi: 10.1126/science.1243167
    [17] Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9(9): 687 doi: 10.1038/nnano.2014.149
    [18] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15(6): 3692 doi: 10.1021/nl5048779
    [19] Xiao M D, Huang F Z, Huang W C, et al. A fast depositioncrystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed, 2014, 53(37): 9898 doi: 10.1002/anie.201405334
    [20] Im J H, Jang I H, Pellet N, et al. Growth of CH3 NH3 PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol, 2014, 9(11): 927 doi: 10.1038/nnano.2014.181
    [21] Ahn N, Son D Y, Jang I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (Ⅱ) iodide. J Am Chem Soc, 2015, 137(27): 8696 doi: 10.1021/jacs.5b04930
    [22] Kim Y H, Cho H, Lee T W. Metal halide perovskite light emitters. Proc Nat Acad Sci USA, 2016, 113(42): 11694 doi: 10.1073/pnas.1607471113
    [23] Yuan M J, Quan L N, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11(10): 872 doi: 10.1038/nnano.2016.110
    [24] Dou L T, Yang Y M, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5: 5404 doi: 10.1038/ncomms6404
    [25] Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13(5): 476 doi: 10.1038/nmat3911
    [26] Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics, 2015, 9(7): 444 doi: 10.1038/nphoton.2015.82
    [27] Gu C W, Lee J S. Flexible hybrid organic-inorganic perovskite memory. ACS Nano, 2016, 10(5): 5413 doi: 10.1021/acsnano.6b01643
    [28] Li F, Ma C, Wang H, et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat Commun, 2015, 6: 8238 doi: 10.1038/ncomms9238
    [29] Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358(6364): 745 doi: 10.1126/science.aam7093
    [30] Wei Y, Cheng Z Y, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem Soc Rev, 2019, 48: 310 doi: 10.1039/C8CS00740C
    [31] Feng J G, Gong C, Gao H F, et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat Electron, 2018, 1(7): 404 doi: 10.1038/s41928-018-0101-5
    [32] Qi X, Zhang Y P, Ou Q D, et al. Photonics and optoelectronics of 2D metal-halide perovskites. Small, 2018, 14(31): 1800682 doi: 10.1002/smll.201800682
    [33] Hong K, Le Q V, Kim S Y, et al. Low-dimensional halide perovskites: review and issues. J Mater Chem C, 2018, 6(9): 2189 doi: 10.1039/C7TC05658C
    [34] Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221): 519 doi: 10.1126/science.aaa2725
    [35] Huang H, Polavarapu L, Sichert J A, et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Mater, 2016, 8(11): e328 doi: 10.1038/am.2016.167
    [36] Xu X Z, Zhang X J, Deng W, et al. 1D organic-inorganic hybrid perovskite micro/nanocrystals: fabrication, assembly, and optoelectronic applications. Small Methods, 2018, 2(7): 1700340 doi: 10.1002/smtd.201700340
    [37] Shao Y C, Fang Y J, Li T, et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ Sci, 2016, 9(5): 1752 doi: 10.1039/C6EE00413J
    [38] Xiao Z G, Yuan Y B, Shao Y C, et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat Mater, 2015, 14(2): 193 doi: 10.1038/nmat4150
    [39] Azpiroz J M, Mosconi E, Bisquert J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci, 2015, 8(7): 2118 doi: 10.1039/C5EE01265A
    [40] Yuan Y B, Li T, Wang Q, et al. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Sci Adv, 2017, 3(3): e1602164 doi: 10.1126/sciadv.1602164
    [41] Sun S B, Yuan D, Xu Y, et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano, 2016, 10(3): 3648 doi: 10.1021/acsnano.5b08193
    [42] Schmidt L C, Pertegas A, Gonzalez-Carrero S, et al. Nontemplate synthesis of CH3 NH3 PbBr3 perovskite nanoparticles. J Am Chem Soc, 2014, 136(3): 850 doi: 10.1021/ja4109209
    [43] Zhang F, Zhong H Z, Chen C, et al. Brightly luminescent and color-tunable colloidal CH3 NH3 PbX3(X=Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9(4): 4533 doi: 10.1021/acsnano.5b01154
    [44] Dirin D N, Protesescu L, Trummer D, et al. Harnessing defecttolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett, 2016, 16(9): 5866 doi: 10.1021/acs.nanolett.6b02688
    [45] Song J Z, Li J H, Li X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX 3). Adv Mater, 2015, 27(44): 7162 doi: 10.1002/adma.201502567
    [46] Cao Y, Wang N N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249 doi: 10.1038/s41586-018-0576-2
    [47] Xiao Z G, Kerner R A, Zhao L F, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat Photonics, 2017, 11(2): 108 doi: 10.1038/nphoton.2016.269
    [48] Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12(11): 681 doi: 10.1038/s41566-018-0260-y
    [49] Wang Y, Li X M, Zhao X, et al. Nonlinear absorption and lowthreshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett, 2016, 16(1): 448 doi: 10.1021/acs.nanolett.5b04110
    [50] Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun, 2015, 6: 8056 doi: 10.1038/ncomms9056
    [51] Dong Y H, Gu Y, Zou Y S, et al. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622 doi: 10.1002/smll.201602366
    [52] Li X M, Yu D J, Chen J, et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015 doi: 10.1021/acsnano.6b08194
    [53] Zheng Z, Zhuge F W, Wang Y G, et al. Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv Funct Mater, 2017, 27(43): 1703115 doi: 10.1002/adfm.201703115
    [54] Lu J W, Sheng X X, Tong G Q, et al. Ultrafast solar-blind ultraviolet detection by inorganic perovskite CsPbX3 quantum dots radial junction architecture. Adv Mater, 2017, 29(23): 1700400 doi: 10.1002/adma.201700400
    [55] Lee Y, Kwon J, Hwang E, et al. High-performance perovskitegraphene hybrid photodetector. Adv Mater, 2015, 27(1): 4
    [56] Kang D H, Pae S R, Shim J, et al. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv Mater, 2016, 28(35): 7799 doi: 10.1002/adma.201600992
    [57] Li F, Wang H, Kufer D, et al. Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes. Adv Mater, 2017, 29(16): 1602432 doi: 10.1002/adma.201602432
    [58] Huo C X, Liu X H, Wang Z M, et al. High-performance lowvoltage-driven phototransistors through CsPbBr3-2D crystal van der Waals heterojunctions. Adv Opt Mater, 2018, 6(16): 1800152 doi: 10.1002/adom.201800152
    [59] Song X F, Liu X H, Yu D J, et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mat Interfaces, 2018, 10(3): 2801 doi: 10.1021/acsami.7b14745
    [60] Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv Mater, 2015, 27(1): 176 doi: 10.1002/adma.201402471
    [61] Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316 doi: 10.1038/nature12340
    [62] Kufer D, Konstantatos G. Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics, 2016, 3(12): 2197 doi: 10.1021/acsphotonics.6b00391
    [63] Hu C, Dong D D, Yang X K, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv Funct Mater, 2017, 27(2): 1603605 doi: 10.1002/adfm.201603605
    [64] Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett, 2015, 15(12): 7853 doi: 10.1021/acs.nanolett.5b02523
    [65] Li L, Wang W K, Chai Y, et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv Funct Mater, 2017, 27(27): 1701011 doi: 10.1002/adfm.201701011
    [66] Bjorkman T, Gulans A, Krasheninnikov A V, et al. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys Rev Lett, 2012, 108(23): 235502 doi: 10.1103/PhysRevLett.108.235502
    [67] Xia W S, Dai L P, Yu P, et al. Recent progress in van der Waals heterojunctions. Nanoscale, 2017, 9(13): 4324 doi: 10.1039/C7NR00844A
    [68] Geim A K, Grigorieva I V. van der Waals heterostructures. Nature, 2013, 499(7459): 419 doi: 10.1038/nature12385
    [69] Jariwala D, Marks T J, Hersam M C. Mixed-dimensional van der Waals heterostructures. Nat Mater, 2017, 16(2): 170 doi: 10.1038/nmat4703
    [70] Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439 doi: 10.1126/science.aac9439
    [71] Wu H L, Kang Z, Zhang Z H, et al. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS20D-2D mixed-dimensional van der Waals heterostructures. Adv Funct Mater, 2018, 28(34): 1802015 doi: 10.1002/adfm.201802015
    [72] Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222 doi: 10.1126/science.aad1818
    [73] Son D Y, Lee J W, Choi Y J, et al. Self-formed grain boundary healing layer for highly efficient CH3 NH3 PbI3 perovskite solar cells. Nat Energy, 2016, 1(7): 16081 doi: 10.1038/nenergy.2016.81
    [74] Mak K F, He K L, Lee C G, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2013, 12(3): 207 doi: 10.1038/nmat3505
    [75] Kozawa D, Carvalho A, Verzhbitskiy I, et al. Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett, 2016, 16(7): 4087 doi: 10.1021/acs.nanolett.6b00801
    [76] Boulesbaa A, Wang K, Mahjouri-Samani M, et al. Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J Am Chem Soc, 2016, 138(44): 14713 doi: 10.1021/jacs.6b08883
    [77] Kwak D H, Lim D H, Ra H S, et al. High performance hybrid graphene-CsPbBr3-xIx perovskite nanocrystal photodetector. RSC Adv, 2016, 6(69): 65252 doi: 10.1039/C6RA08699C
    [78] Wu H L, Si H N, Zhang Z H, et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv Sci, 2018, 5(12): 1801219 doi: 10.1002/advs.201801219
    [79] Kim H S, Seo J Y, Park N G. Material and device stability in perovskite solar cells. ChemSusChem, 2016, 9(18): 2528 doi: 10.1002/cssc.201600915
    [80] Wang Q, Chen B, Liu Y, et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ Sci, 2017, 10(2): 516 doi: 10.1039/C6EE02941H
    [81] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photonics, 2014, 8(7): 506 doi: 10.1038/nphoton.2014.134
    [82] Nazarenko O, Yakunin S, Morad V, et al. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater, 2017(4): e373 http://www.nature.com/articles/am201745
    [83] Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362(6413): 449 doi: 10.1126/science.aat3583
    [84] Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc, 2016, 138(8): 2649 doi: 10.1021/jacs.5b11740
    [85] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 2018, 555(7697): 497 doi: 10.1038/nature25989
    [86] Abdi-Jalebi M, Andaji-Garmaroudi Z, Pearson A J, et al. Potassium-and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability. ACS Energy Lett, 2018, 3(11): 2671 doi: 10.1021/acsenergylett.8b01504
    [87] Jiang Q L, Chen M M, Li J Q, et al. Electrochemical doping of halide perovskites with ion intercalation. ACS Nano, 2017, 11(1): 1073 doi: 10.1021/acsnano.6b08004
    [88] Bai D L, Zhang J R, Jin Z W, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett, 2018, 3(4): 970 doi: 10.1021/acsenergylett.8b00270
    [89] Liu M, Zhong G H, Yin Y M, et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv Sci, 2017, 4(11): 1700335 doi: 10.1002/advs.201700335
    [90] Swarnkar A, Mir W J, Nag A. Can B-site doping or alloying improve thermal-and phase-stability of all-inorganic CsPbX3(X=Cl, Br, I) perovskites?. ACS Energy Lett, 2018, 3(2): 286 doi: 10.1021/acsenergylett.7b01197
    [91] Kamat P V, Bisquert J, Buriak J. Lead-free perovskite solar cells. ACS Energy Lett, 2017, 2(4): 904 doi: 10.1021/acsenergylett.7b00246
    [92] Jellicoe T C, Richter J M, Glass H F J, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J Am Chem Soc, 2016, 138(9): 2941 doi: 10.1021/jacs.5b13470
    [93] Yang B, Chen J S, Hong F, et al. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew Chem Int Ed, 2017, 129(41): 12645 doi: 10.1002/ange.201704739
    [94] Dai J F, Xi J, Li L, et al. Charge transport between coupling colloidal perovskite quantum dots assisted by functional conjugated ligands. Angew Chem Int Ed, 2018, 57(20): 5754 doi: 10.1002/anie.201801780
    [95] Wang R L, Shang Y Q, Kanjanaboos P, et al. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ Sci, 2016, 9(4): 1130 doi: 10.1039/C5EE03887A
    [96] Suh Y H, Kim T, Choi J W, et al. High-performance CsPbX3 perovskite quantum-dot light-emitting devices via solid-state ligand exchange. ACS Appl Nano Mater, 2018, 1(2): 488 doi: 10.1021/acsanm.7b00212
    [97] Pan J, Quan L N, Zhao Y B, et al. Highly efficient perovskitequantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28(39): 8718 doi: 10.1002/adma.201600784
    [98] Li J H, Xu L M, Wang T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater, 2017, 29(5): 1603885 doi: 10.1002/adma.201603885
  • 加載中
圖(6)
計量
  • 文章訪問數:  1947
  • HTML全文瀏覽量:  874
  • PDF下載量:  80
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-12-11
  • 刊出日期:  2019-03-20

目錄

    /

    返回文章
    返回