Halide perovskite quantum dot based 0D-2D mixed-dimensional heterostructure photodetectors: progress and challenges
-
摘要: 綜述了多晶鹵化物鈣鈦礦薄膜的局限性, 鹵化物鈣鈦礦量子點的基本光學性質和制備方法, 以及在光電探測器方面的器件結構研究進展, 并重點介紹了應用在0D-2D混合維度異質結基光電晶體管器件的突破, 包括界面載流子行為和高性能光探測器的構建.最后, 總結了鹵化物鈣鈦礦量子點作為未來商業化應用的光電子器件和電子器件的候選材料所面臨的主要問題和挑戰, 譬如化學不穩定性、鉛毒性問題、量子點與其他材料間界面高效電荷傳輸等問題, 并提出了解決思路和方法.這為設計和推進高性能、高穩定性鹵化物鈣鈦礦量子點基光電功能化器件的商業化應用指明了方向.Abstract: Due to various advantages such as outstanding light absorption coefficient, long charge carrier diffusion distance, simple synthesis method, and low cost, halide perovskite materials, which are light absorption materials, are widely considered as promising candidates for next-generation electronic and optoelectronic devices such as solar cell, light-emitting diode, photodetector, laser device, X-ray imaging, and information storage devices. Particularly, since the introduction of halide perovskite-based solar cells in 2009, their solar conversion efficiency has increased from 3.8% to 23%, which is almost equal to that of commercial silicon cells, in less than ten years. However, the low phase stability, ion migration-induced hysteresis phenomena, and performance degradation significantly impede the further commercial application development of halide perovskite-based materials. Most recently, more attention has been paid to the zero-dimensional (0D) halide perovskite quantum dots (QDs) as compared to polycrystalline perovskite films because of their unique optical and electrical properties such as high crystalline quality and defect tolerance, flexible composition, quantum confinement effect, and geometric anisotropy. This paper summarized the limitations of the polycrystalline perovskite films and reviewed the intrinsic optical properties and detailed synthesis methods of halide perovskite QDs as well as their applications in optoelectronic devices. Specifically, the recent breakthrough on 0D-2D mixed-dimensional van der Waals phototransistors was systematically introduced. In addition, some perspectives of mixed-dimensional van der Waals phototransistors, which include interfacial charge carrier behavior modulation and subsequent construction of high performance photosensing device, were highlighted, and the corresponding scientific issues and challenges were discussed as well. Such comprehensive review is expected to be helpful for understanding and solving current issues faced in this research field; thus, it will effectively guide the evolution of the halide perovskite quantum dot materials and the development of perovskite-based next-generation optoelectronic devices in future.
-
圖 1 多晶鈣鈦礦薄膜基本結構及其局限性. (a) 典型鈣鈦礦結構; (b) 平面鈣鈦礦光伏結構; (c) 器件在正向極化和反向極化下的光電流; (d) 碘空位(VI) 和(e) 甲胺空位(VMA) 遷移路徑; (f) 鈣鈦礦薄膜的原子力顯微鏡形貌; 導電原子力顯微鏡測得鈣鈦礦晶界電流(g) 和晶粒內電流(h)
Figure 1. Typical structure and limitations of polycrystalline perovskite thin films: (a) typical perovskite crystal structure; (b) schematic of the lateral structure photovoltaic devices; (c) hysteresis of photocurrents under negative and positive poling; defects diffusion or ion migration paths for vacan-cies VI (d) and VMA (e); (f) AFM topography image of the perovskite film; local current measured in grain boundary (g) and grain (h) in Fig. (f)
圖 3 (a) 平面MSM結構的CsPbBr3納米薄膜光探測器; (b) CsPbBr3納米薄膜光探測器的I-V曲線; (c) CsPbX3量子點在日光和UV光照下的照片及與Si納米線形成異質結結構示意圖; (d) CsPbX3量子點/Si納米線的吸收譜和在300 nm和510 nm處的吸收強度分布
Figure 3. (a) Schematic of device construction and carrier transportation; (b) current-voltage (I-V) logarithm curves of the photodetector under dif-ferent powers; (c) images of the CsPbX3 QDs solution illuminated under sunlight/UV light and a 3D schematic illustration of the junction structure constructed upon SiNWs; (d) normalized PL and absorption spectra of CsPbBr3 QDs, with a simulation distribution profile of absorption intensity at300 nm and 510 nm
圖 4 鈣鈦礦基光電場效應晶體管器件. (a) MAPbI3鈣鈦礦薄膜光電晶體管示意圖; (b) 鈣鈦礦薄膜的原子力顯微鏡形貌, 插圖為3D形貌結構圖; (c) 鈣鈦礦光電晶體管的光響應性能; (d) 鈣鈦礦/CNTs復合結構中的電荷傳輸示意圖; (e) 鈣鈦礦/CNTs光電晶體管結構示意圖; (f) 輸出特性曲線; (g) 鈣鈦礦/石墨烯光電晶體管結構示意圖; (h) 光響應和外量子效率; (i) CsPbBr3/Mo S2混合光電晶體管結構示意圖
Figure 4. Perovskite-based photoelectric field effect transistor devices: (a) schematic of the MAPb I3phototransistor; (b) AFM height image and the corresponding 3D topographic image of the perovskite fllm; (c) photoresponsivity of the perovskite phototransistor; (d) schematic of the fast carrier transport in perovskite/CNTs hybrid structure; (e) schematic of the perovskite/CNTs phototransistor; (f) output characteristics; (g) schematic of the perovskite-graphene hybrid phototransistor; (h) photoresponsivity (R) and external quantum efflciency (EQE) characteristics of the device; (i) schematic of the CsPbBr3/Mo S2hybrid structure
圖 5 0D-2D混合維度范德華異質結中界面電荷行為調控和表征. (a) 兩種鈣鈦礦量子點/Mo S20D-2D混合維度異質結示意圖; (b) 兩種異質結的時間分辨光致發光譜; Type-Ⅰ (c) 和type-Ⅱ (d) 異質結中的熒光強度及熒光壽命成像; (e) 鈣鈦礦量子點/Mo S2混合維度光電晶體管示意圖; (f) Type-Ⅱ型光電晶體管在不同光功率下的轉移特性曲線, 插圖為閾值電壓變化值隨功率變化關系; (g) 不同功率下光響應性能曲線
Figure 5. Interfacial charge behavior modulation and characterization in the 0D-2D mixed-dimensional van der Waals heterostructures (MvdWHs) : (a) schematic model of the two types of perovskite quantum dots-monolayer Mo S20D-2D MvdWHs; (b) time-resolved photoluminescence spectroscopy; Fluorescence intensity and fluorescence lifetime mapping of images for type-Ⅰ (c) and type-Ⅱ (d) Mvd WHs excited by 483 nm laser; (e) schematic model of the phototransistor devices with an optical image in its inset; (f) transfer curves for the type-ⅡMvdWH-based phototransistor at different il-lumination powers, inset showing the shift of the threshold voltage vs effcient illumination powers; (g) responsivity (R) at each gate voltage vs effcient illumination powers
圖 6 0D-2D混合維度光電晶體管型光探測器. (a) CsPbBr3-xIx納米晶-石墨烯混合光電晶體管示意圖; (b) 光照下的能帶結構示意圖; (c) CsPbBr3-xIx納米晶-石墨烯混合光電晶體管轉移特性曲線; (d) 全無機鈣鈦礦量子點-Mo S2混合光電晶體管示意圖; (e) 異質結的熒光壽命成像圖; (f) 時間分辨光致發光譜; (g) 閾值電壓改變值隨功率變化關系; (h) 開態下(柵壓VG > 閾值電壓Vt) 溝道電流傳輸機制及能帶結構示意圖; (i) 不同功率下器件的光響應度、探測極限及外量子效率
Figure 6. Photodetectors based on 0D-2D mixed-dimensional phototransistor: (a) schematic model of the CsPbBr3-xIx NCs-graphene phototransistor; (b) energy diagrams of the CsPbBr3-xIx NCs-graphene heterostructure under illumination; (c) transfer curve for the CsPbBr3-xIx NCs-graphene phototransistor; (d) schematic of the all-inorganic perovskite CsPbI3-xBrx QDs-MoS2monolayer mixed-dimensional phototransistor; (e) fluorescence lifetime image mapping of the mixed-dimensional herterostructure; (f) time-resolved photoluminescence spectroscopy of the mixed-dimensional herterostructure; (g) shift of the threshold voltage (ΔVth) as a function of effective illumination power; (h) schematic illustration of the channel current transport mechanism and energy band diagram of the phototransistor at on-state (VG > Vt); (i) responsivity (R) and specific detectivity (D*), with an inset showing the EQE as a function of illumination power
259luxu-164 -
參考文獻
[1] Weber D. CH3 NH3 PbX3, ein Pb(Ⅱ)-system mit kubischer perowskitstruktur/CH3 NH3 PbX3, a Pb(Ⅱ)-system with cubic perovskite structure. Z Naturforsch B Chem Sci, 1978, 33(12): 1443 doi: 10.1515/znb-1978-1214 [2] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17): 6050 doi: 10.1021/ja809598r [3] Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234 doi: 10.1126/science.aaa9272 [4] McMeekin D P, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351(6269): 151 doi: 10.1126/science.aad5845 [5] Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358(6364): 768 doi: 10.1126/science.aam5655 [6] Correa-Baena J P, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739 doi: 10.1126/science.aam6323 [7] Stolterfoht M, Wolff C M, Márquez J A, et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat Energy, 2018, 3(10): 847 doi: 10.1038/s41560-018-0219-8 [8] Jiang Y Z, Yuan J, Ni Y X, et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2018, 2(7): 1356 doi: 10.1016/j.joule.2018.05.004 [9] Jeon N J, Na H, Jung E H, et al. A fluorene-terminated holetransporting material for highly efficient and stable perovskite solar cells. Nat Energy, 2018, 3(8): 682 doi: 10.1038/s41560-018-0200-6 [10] Chen H, Ye F, Tang W T, et al. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 550(7674): 92 doi: 10.1038/nature23877 [11] Li X, Bi D Q, Yi C Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353(6294): 58 doi: 10.1126/science.aaf8060 [12] Huang J S, Yuan Y B, Shao Y C, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater, 2017, 2(7): 17042 doi: 10.1038/natrevmats.2017.42 [13] Brenner T M, Egger D A, Kronik L, et al. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater, 2016, 1(1): 15007 doi: 10.1038/natrevmats.2015.7 [14] Green M A, Jiang Y J, Soufiani A M, et al. Optical properties of photovoltaic organic-inorganic lead halide perovskites. J Phys Chem Lett, 2015, 6(23): 4774 doi: 10.1021/acs.jpclett.5b01865 [15] Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175μm in solution grown CH3 NH3 PbI3 single crystals. Science, 2015, 347(6225): 967 doi: 10.1126/science.aaa5760 [16] Xing G C, Mathews N, Sun S Y, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3 NH3 PbI3. Science, 2013, 342(6156): 344 doi: 10.1126/science.1243167 [17] Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9(9): 687 doi: 10.1038/nnano.2014.149 [18] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15(6): 3692 doi: 10.1021/nl5048779 [19] Xiao M D, Huang F Z, Huang W C, et al. A fast depositioncrystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed, 2014, 53(37): 9898 doi: 10.1002/anie.201405334 [20] Im J H, Jang I H, Pellet N, et al. Growth of CH3 NH3 PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol, 2014, 9(11): 927 doi: 10.1038/nnano.2014.181 [21] Ahn N, Son D Y, Jang I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (Ⅱ) iodide. J Am Chem Soc, 2015, 137(27): 8696 doi: 10.1021/jacs.5b04930 [22] Kim Y H, Cho H, Lee T W. Metal halide perovskite light emitters. Proc Nat Acad Sci USA, 2016, 113(42): 11694 doi: 10.1073/pnas.1607471113 [23] Yuan M J, Quan L N, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11(10): 872 doi: 10.1038/nnano.2016.110 [24] Dou L T, Yang Y M, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5: 5404 doi: 10.1038/ncomms6404 [25] Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13(5): 476 doi: 10.1038/nmat3911 [26] Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics, 2015, 9(7): 444 doi: 10.1038/nphoton.2015.82 [27] Gu C W, Lee J S. Flexible hybrid organic-inorganic perovskite memory. ACS Nano, 2016, 10(5): 5413 doi: 10.1021/acsnano.6b01643 [28] Li F, Ma C, Wang H, et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat Commun, 2015, 6: 8238 doi: 10.1038/ncomms9238 [29] Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358(6364): 745 doi: 10.1126/science.aam7093 [30] Wei Y, Cheng Z Y, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem Soc Rev, 2019, 48: 310 doi: 10.1039/C8CS00740C [31] Feng J G, Gong C, Gao H F, et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat Electron, 2018, 1(7): 404 doi: 10.1038/s41928-018-0101-5 [32] Qi X, Zhang Y P, Ou Q D, et al. Photonics and optoelectronics of 2D metal-halide perovskites. Small, 2018, 14(31): 1800682 doi: 10.1002/smll.201800682 [33] Hong K, Le Q V, Kim S Y, et al. Low-dimensional halide perovskites: review and issues. J Mater Chem C, 2018, 6(9): 2189 doi: 10.1039/C7TC05658C [34] Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221): 519 doi: 10.1126/science.aaa2725 [35] Huang H, Polavarapu L, Sichert J A, et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Mater, 2016, 8(11): e328 doi: 10.1038/am.2016.167 [36] Xu X Z, Zhang X J, Deng W, et al. 1D organic-inorganic hybrid perovskite micro/nanocrystals: fabrication, assembly, and optoelectronic applications. Small Methods, 2018, 2(7): 1700340 doi: 10.1002/smtd.201700340 [37] Shao Y C, Fang Y J, Li T, et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ Sci, 2016, 9(5): 1752 doi: 10.1039/C6EE00413J [38] Xiao Z G, Yuan Y B, Shao Y C, et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat Mater, 2015, 14(2): 193 doi: 10.1038/nmat4150 [39] Azpiroz J M, Mosconi E, Bisquert J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci, 2015, 8(7): 2118 doi: 10.1039/C5EE01265A [40] Yuan Y B, Li T, Wang Q, et al. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Sci Adv, 2017, 3(3): e1602164 doi: 10.1126/sciadv.1602164 [41] Sun S B, Yuan D, Xu Y, et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano, 2016, 10(3): 3648 doi: 10.1021/acsnano.5b08193 [42] Schmidt L C, Pertegas A, Gonzalez-Carrero S, et al. Nontemplate synthesis of CH3 NH3 PbBr3 perovskite nanoparticles. J Am Chem Soc, 2014, 136(3): 850 doi: 10.1021/ja4109209 [43] Zhang F, Zhong H Z, Chen C, et al. Brightly luminescent and color-tunable colloidal CH3 NH3 PbX3(X=Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9(4): 4533 doi: 10.1021/acsnano.5b01154 [44] Dirin D N, Protesescu L, Trummer D, et al. Harnessing defecttolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett, 2016, 16(9): 5866 doi: 10.1021/acs.nanolett.6b02688 [45] Song J Z, Li J H, Li X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX 3). Adv Mater, 2015, 27(44): 7162 doi: 10.1002/adma.201502567 [46] Cao Y, Wang N N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249 doi: 10.1038/s41586-018-0576-2 [47] Xiao Z G, Kerner R A, Zhao L F, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat Photonics, 2017, 11(2): 108 doi: 10.1038/nphoton.2016.269 [48] Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12(11): 681 doi: 10.1038/s41566-018-0260-y [49] Wang Y, Li X M, Zhao X, et al. Nonlinear absorption and lowthreshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett, 2016, 16(1): 448 doi: 10.1021/acs.nanolett.5b04110 [50] Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun, 2015, 6: 8056 doi: 10.1038/ncomms9056 [51] Dong Y H, Gu Y, Zou Y S, et al. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622 doi: 10.1002/smll.201602366 [52] Li X M, Yu D J, Chen J, et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015 doi: 10.1021/acsnano.6b08194 [53] Zheng Z, Zhuge F W, Wang Y G, et al. Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv Funct Mater, 2017, 27(43): 1703115 doi: 10.1002/adfm.201703115 [54] Lu J W, Sheng X X, Tong G Q, et al. Ultrafast solar-blind ultraviolet detection by inorganic perovskite CsPbX3 quantum dots radial junction architecture. Adv Mater, 2017, 29(23): 1700400 doi: 10.1002/adma.201700400 [55] Lee Y, Kwon J, Hwang E, et al. High-performance perovskitegraphene hybrid photodetector. Adv Mater, 2015, 27(1): 4 [56] Kang D H, Pae S R, Shim J, et al. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv Mater, 2016, 28(35): 7799 doi: 10.1002/adma.201600992 [57] Li F, Wang H, Kufer D, et al. Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes. Adv Mater, 2017, 29(16): 1602432 doi: 10.1002/adma.201602432 [58] Huo C X, Liu X H, Wang Z M, et al. High-performance lowvoltage-driven phototransistors through CsPbBr3-2D crystal van der Waals heterojunctions. Adv Opt Mater, 2018, 6(16): 1800152 doi: 10.1002/adom.201800152 [59] Song X F, Liu X H, Yu D J, et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mat Interfaces, 2018, 10(3): 2801 doi: 10.1021/acsami.7b14745 [60] Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv Mater, 2015, 27(1): 176 doi: 10.1002/adma.201402471 [61] Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316 doi: 10.1038/nature12340 [62] Kufer D, Konstantatos G. Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics, 2016, 3(12): 2197 doi: 10.1021/acsphotonics.6b00391 [63] Hu C, Dong D D, Yang X K, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv Funct Mater, 2017, 27(2): 1603605 doi: 10.1002/adfm.201603605 [64] Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett, 2015, 15(12): 7853 doi: 10.1021/acs.nanolett.5b02523 [65] Li L, Wang W K, Chai Y, et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv Funct Mater, 2017, 27(27): 1701011 doi: 10.1002/adfm.201701011 [66] Bjorkman T, Gulans A, Krasheninnikov A V, et al. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys Rev Lett, 2012, 108(23): 235502 doi: 10.1103/PhysRevLett.108.235502 [67] Xia W S, Dai L P, Yu P, et al. Recent progress in van der Waals heterojunctions. Nanoscale, 2017, 9(13): 4324 doi: 10.1039/C7NR00844A [68] Geim A K, Grigorieva I V. van der Waals heterostructures. Nature, 2013, 499(7459): 419 doi: 10.1038/nature12385 [69] Jariwala D, Marks T J, Hersam M C. Mixed-dimensional van der Waals heterostructures. Nat Mater, 2017, 16(2): 170 doi: 10.1038/nmat4703 [70] Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439 doi: 10.1126/science.aac9439 [71] Wu H L, Kang Z, Zhang Z H, et al. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS20D-2D mixed-dimensional van der Waals heterostructures. Adv Funct Mater, 2018, 28(34): 1802015 doi: 10.1002/adfm.201802015 [72] Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222 doi: 10.1126/science.aad1818 [73] Son D Y, Lee J W, Choi Y J, et al. Self-formed grain boundary healing layer for highly efficient CH3 NH3 PbI3 perovskite solar cells. Nat Energy, 2016, 1(7): 16081 doi: 10.1038/nenergy.2016.81 [74] Mak K F, He K L, Lee C G, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2013, 12(3): 207 doi: 10.1038/nmat3505 [75] Kozawa D, Carvalho A, Verzhbitskiy I, et al. Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett, 2016, 16(7): 4087 doi: 10.1021/acs.nanolett.6b00801 [76] Boulesbaa A, Wang K, Mahjouri-Samani M, et al. Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J Am Chem Soc, 2016, 138(44): 14713 doi: 10.1021/jacs.6b08883 [77] Kwak D H, Lim D H, Ra H S, et al. High performance hybrid graphene-CsPbBr3-xIx perovskite nanocrystal photodetector. RSC Adv, 2016, 6(69): 65252 doi: 10.1039/C6RA08699C [78] Wu H L, Si H N, Zhang Z H, et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv Sci, 2018, 5(12): 1801219 doi: 10.1002/advs.201801219 [79] Kim H S, Seo J Y, Park N G. Material and device stability in perovskite solar cells. ChemSusChem, 2016, 9(18): 2528 doi: 10.1002/cssc.201600915 [80] Wang Q, Chen B, Liu Y, et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ Sci, 2017, 10(2): 516 doi: 10.1039/C6EE02941H [81] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photonics, 2014, 8(7): 506 doi: 10.1038/nphoton.2014.134 [82] Nazarenko O, Yakunin S, Morad V, et al. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater, 2017(4): e373 http://www.nature.com/articles/am201745 [83] Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362(6413): 449 doi: 10.1126/science.aat3583 [84] Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc, 2016, 138(8): 2649 doi: 10.1021/jacs.5b11740 [85] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 2018, 555(7697): 497 doi: 10.1038/nature25989 [86] Abdi-Jalebi M, Andaji-Garmaroudi Z, Pearson A J, et al. Potassium-and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability. ACS Energy Lett, 2018, 3(11): 2671 doi: 10.1021/acsenergylett.8b01504 [87] Jiang Q L, Chen M M, Li J Q, et al. Electrochemical doping of halide perovskites with ion intercalation. ACS Nano, 2017, 11(1): 1073 doi: 10.1021/acsnano.6b08004 [88] Bai D L, Zhang J R, Jin Z W, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett, 2018, 3(4): 970 doi: 10.1021/acsenergylett.8b00270 [89] Liu M, Zhong G H, Yin Y M, et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv Sci, 2017, 4(11): 1700335 doi: 10.1002/advs.201700335 [90] Swarnkar A, Mir W J, Nag A. Can B-site doping or alloying improve thermal-and phase-stability of all-inorganic CsPbX3(X=Cl, Br, I) perovskites?. ACS Energy Lett, 2018, 3(2): 286 doi: 10.1021/acsenergylett.7b01197 [91] Kamat P V, Bisquert J, Buriak J. Lead-free perovskite solar cells. ACS Energy Lett, 2017, 2(4): 904 doi: 10.1021/acsenergylett.7b00246 [92] Jellicoe T C, Richter J M, Glass H F J, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J Am Chem Soc, 2016, 138(9): 2941 doi: 10.1021/jacs.5b13470 [93] Yang B, Chen J S, Hong F, et al. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew Chem Int Ed, 2017, 129(41): 12645 doi: 10.1002/ange.201704739 [94] Dai J F, Xi J, Li L, et al. Charge transport between coupling colloidal perovskite quantum dots assisted by functional conjugated ligands. Angew Chem Int Ed, 2018, 57(20): 5754 doi: 10.1002/anie.201801780 [95] Wang R L, Shang Y Q, Kanjanaboos P, et al. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ Sci, 2016, 9(4): 1130 doi: 10.1039/C5EE03887A [96] Suh Y H, Kim T, Choi J W, et al. High-performance CsPbX3 perovskite quantum-dot light-emitting devices via solid-state ligand exchange. ACS Appl Nano Mater, 2018, 1(2): 488 doi: 10.1021/acsanm.7b00212 [97] Pan J, Quan L N, Zhao Y B, et al. Highly efficient perovskitequantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28(39): 8718 doi: 10.1002/adma.201600784 [98] Li J H, Xu L M, Wang T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater, 2017, 29(5): 1603885 doi: 10.1002/adma.201603885 -