Performance of single fiber collection PM2.5 under different magnetic field forms in the iron and steel industry
-
摘要: 目前鋼鐵行業已成為大氣污染防治的重點,為解決現有鋼鐵行業對于PM2.5細顆粒難以捕集的難題,實現粉塵的超低排放。基于CFD-DPM(computational fluid dynamics-discrete phase model)方法對磁性纖維產生的磁場以及高梯度磁場等不同磁場形式下單纖維對鋼鐵行業捕集PM2.5性能的影響進行研究,通過X射線衍射圖譜分析可知鋼鐵行業生產過程產生的粉塵因含有Fe3O4以及單質Fe而具有磁特性,進而提出了利用磁場來增強單纖維捕集PM2.5性能的方法. 計算結果表明,在運動軌跡方面,磁性纖維產生的磁場會在纖維周圍形成引力區,高梯度磁場會在纖維周圍形成2個引力區和2個斥力區;在捕集性能方面,當粉塵粒徑dp為0.5~1.0 μm,入口風速v≤0.2 m·s?1時,高梯度磁場下磁性纖維的捕集能力要強于單一磁性纖維的捕集能力,若磁場強度H=0.5 T,磁感應強度B=0.01 T,v=0.1 m·s?1,高梯度磁場可以使單纖維的捕集效率提高為傳統單纖維捕集的28.32倍,若B=0.01 T,v=0.1 m·s?1,磁性纖維產生的磁場可以使捕集效率提高為傳統單纖維捕集的4.037倍;在磁性纖維產生的磁場中,當磁感應強度B≥0.03 T時,磁性單纖維對PM2.5的捕集效率隨著入口風速的增加而減小,后趨于穩定,當B<0.03 T時,捕集效率隨入口風速逐漸減小;捕集效率隨粉塵粒徑的增加而增大. 而對于高梯度磁場,單纖維對PM2.5捕集效率同樣隨著入口風速的增加而減小,當v>0.4 m·s?1時,捕集效率為0,B越大,捕集效率下降越快;捕集效率隨著粉塵粒徑增大呈現先增加后減小的趨勢.Abstract: At present, the steel industry has become the focus of air pollution prevention and control. To solve the difficulty in collecting PM2.5 fine particles and achieving ultra-low emission of dust, based on the method of computational fluid dynamics-discrete phase model (CFD-DPM), the influence of different magnetic field forms, such as magnetic field generated by magnetic fiber and high-gradient magnetic field, on the performance of PM2.5 collection in the iron and steel industry was studied. Through X-ray diffraction (XRD) analysis, it was found out that the dust produced in the iron and steel industry production process has magnetic characteristics due to the presence of Fe3O4 and elemental Fe, furthermore, the method of using magnetic field to enhance the PM2.5 collection performance of single fiber was proposed. The results show that the magnetic field generated by the magnetic fiber will form a gravitational region around the fiber, and the high-gradient magnetic field will form two gravitational regions and two repulsive regions around the fiber. In terms of the collection ability, when particle diameter dp between 0.5 and 1.0 μm, inlet velocity v≤0.2 m·s?1, the collection ability of magnetic fiber under the high-gradient magnetic field is stronger than that of the single magnetic fiber. If magnetic field intensity H=0.5 T, magnetic induction intensity B=0.01 T, and v=0.1 m·s?1, the high-gradient magnetic field can improve the single fiber collection efficiency by 28.32 times as much as the original; if B=0.01 T, v=0.1 ms?1, the magnetic field generated by the magnetic fiber can improve the single fiber collection efficiency by 4.037 times as much as the original. In terms of the collection law, in the magnetic field generated by the magnetic fiber, when the magnetic flux density B≥0.03 T, the collection efficiency of magnetic single fiber on PM2.5 decreases with the increase of inlet velocity speed and then tends to be stable. When B<0.03 T, the collection efficiency decreases with the inlet velocity speed. The collection efficiency increases with the increase of dust particle size. For the high-gradient magnetic field, the single fiber collection efficiency of PM2.5 particles also decreases with the increase of inlet velocity speed. When v>0.4 ms?1, the collection efficiency is 0. The larger B is, the faster the collection efficiency decreases. The collection efficiency increases first and then decreases with a increase in dust particle size.
-
Key words:
- magnetic fiber /
- high-gradient magnetic field /
- PM2.5 /
- ferromagnetism /
- collection performance
-
圖 11 不同入口風速下粉塵在磁場中的運動軌跡(dp=1.0 μm). (a) 磁性纖維產生的磁場B=0.05 T; (b)高梯度磁場H=0.5 T,B=0.05 T
Figure 11. Movement trajectory of dust in magnetic field at different inlet velocity speeds (dp=1.0 μm): (a) magnetic field generated by magnetic fiber (B=0.05 T); (b) high-gradient magnetic field (H=0.5 T, B=0.05 T)
圖 13 不同粒徑粉塵在磁場中的運動軌跡(v=0.1 m·s?1).(a) 磁性纖維產生的磁場(B=0.05 T); (b) 高梯度磁場(H=0.5 T,B=0.05 T)
Figure 13. Movement trajectory of dust with different particle sizes in magnetic field (v=0.1 m·s?1): (a) magnetic field generated by magnetic fiber (B=0.05 T); (b) high-gradient magnetic field (H=0.5 T, B=0.05 T)
259luxu-164 -
參考文獻
[1] Zhang Y. Eco-design of steel industry and policy options in China. China's Popul Resour Environ, 2012, 22(7): 162張雅. 鋼鐵產業生態化設計與政策選擇. 中國人口?資源與環境, 2012, 22(7):162 [2] Xiong G L, Li S Q, Chen S, et al. Development of advanced electrostatic precipitation technologies for reducing PM2.5 emissions from coal-fired power plants. Proc CSEE, 2015, 35(9): 2217熊桂龍, 李水清, 陳晟, 等. 增強PM2.5脫除的新型電除塵技術的發展. 中國電機工程學報, 2015, 35(9):2217 [3] Qu Y, Qian X, Song H Q, et al. Machine-learning-based model and simulation analysis of PM2.5 concentration prediction in Beijing. Chin J Eng, 2019, 41(3): 401曲悅, 錢旭, 宋洪慶, 等. 基于機器學習的北京市PM2.5濃度預測模型及模擬分析. 工程科學學報, 2019, 41(3):401 [4] Gu C H, Lü S W, Li R, et al. Influence of fiber on filtration performance for PM2.5. CIESC J, 2014, 65(6): 2137 doi: 10.3969/j.issn.0438-1157.2014.06.026顧從匯, 呂士武, 李瑞, 等. 纖維對PM2.5過濾性能的影響. 化工學報, 2014, 65(6):2137 doi: 10.3969/j.issn.0438-1157.2014.06.026 [5] Bao L, Musadiq M, Kijima T, et al. Influence of fibers on the dust dislodgement efficiency of bag filters. Text Res J, 2014, 84(7): 764 doi: 10.1177/0040517513509853 [6] Yang M M, Li S Q, Yao Q. Mechanistic studies of initial deposition of fine adhesive particles on a fiber using discrete-element methods. Powder Technol, 2013, 248: 44 doi: 10.1016/j.powtec.2012.12.016 [7] Hosseini S A, Tafreshi H V. Modeling particle-loaded single fiber efficiency and fiber drag using ANSYS-Fluent CFD code. Comput Fluids, 2012, 66: 157 doi: 10.1016/j.compfluid.2012.06.017 [8] Huang S, Zhang X M, Tafu M, et al. Study on subway particle capture by ferromagnetic mesh filter in nonuniform magnetic field. Sep Purif Technol, 2015, 156: 642 doi: 10.1016/j.seppur.2015.10.060 [9] Ke C H, Shu S, Zhang H, et al. LBM-IBM-DEM modelling of magnetic particles in a fluid. Powder Technol, 2016, 314: 264 [10] Zhao L, Li X L, Sun W Q, et al. Experimental study on bag filtration enhanced by magnetic aggregation of fine particles from hot metal casting process. Powder Technol, 2018, 327: 255 doi: 10.1016/j.powtec.2017.12.083 [11] Baik S K, Ha D W, Kwon J M, et al. Magnetic force on a magnetic particle within a high gradient magnetic separator. Physica C, 2013, 484: 333 doi: 10.1016/j.physc.2012.03.033 [12] Zheng X Y, Wang Y H, Lu D F. Investigation of the particle capture of elliptic cross-sectional matrix for high gradient magnetic separation. Powder Technol, 2016, 297: 303 doi: 10.1016/j.powtec.2016.04.032 [13] Qian F P, Huang N J, Zhu X J, et al. Numerical study of the gas-solid flow characteristic of fibrous media based on SEM using CFD-DEM. Powder Technol, 2013, 249: 63 doi: 10.1016/j.powtec.2013.07.030 [14] Zhu H J. Fluid Analysis and Engineering Simulation of Fluent 12. Beijing: Tsinghua University Press, 2011朱紅鈞. Fluent12流體分析及工程仿真. 北京: 清華大學出版社, 2011 [15] Tripathy S K, Bhoja S K, Kumar C R, et al. A short review on hydraulic classification and its development in mineral industry. Powder Technol, 2015, 270: 205 doi: 10.1016/j.powtec.2014.09.049 [16] Eisentr?ger A, Vella D, Griffiths I M. Particle capture efficiency in a multi-wire model for high gradient magnetic separation. Appl Phys Lett, 2014, 105(3): 033508 doi: 10.1063/1.4890965 [17] Zhao H L, Fu H M, Lei C L, et al. Effect of fiber’s cross-sectional shape on fiber collection efficiency and pressure drop. J Donghua Univ Nat Sci, 2016, 42(1): 86趙洪亮, 付海明, 雷陳磊, 等. 纖維截面形狀對纖維捕集效率及壓力損失的影響. 東華大學學報: 自然科學版, 2016, 42(1):86 [18] Wang F H, Tie Z X. Numerical simulation for high gradient magnetic field located single magnetic medium in entrapping magnetism particles. Coal Prepar Technol, 2012(2): 20 doi: 10.3969/j.issn.1001-3571.2012.02.006王發輝, 鐵占續. 高梯度磁場中單根磁介質捕集磁性微粒的數值模擬. 選煤技術, 2012(2):20 doi: 10.3969/j.issn.1001-3571.2012.02.006 [19] Yang R Q. Investigation on Kinetic Characteristic of Magnetic Fine Particles in High Gradient Magnetic Field [Dissertation]. Nanjing: Southeast University, 2006楊榮清. 高梯度磁場中磁性可吸入顆粒物動力學特性研究[學位論文]. 南京: 東南大學, 2006 [20] Xiong D H. Study on comparison between vertical and horizontal magnetic fields in pulsating high gradient magnetic separation. Metal Mine, 2004(10): 24 doi: 10.3321/j.issn:1001-1250.2004.10.008熊大和. 脈動高梯度磁選垂直磁場與水平磁場對比研究. 金屬礦山, 2004(10):24 doi: 10.3321/j.issn:1001-1250.2004.10.008 [21] Sun Z Y. Magnetic Separation Theory. Changsha: Central South University Press, 2007孫仲元. 磁選理論. 長沙: 中南大學出版社, 2007 [22] Qian F P, Wang H G. Numerical analysis on particle capture characteristics of fibrous filters with random structure. J Civil Architect Environ Eng, 2010, 32(6): 120錢付平, 王海剛. 隨機排列纖維過濾器顆粒捕集特性的數值研究. 土木建筑與環境工程, 2010, 32(6):120 [23] Zhu H, Fu H M, Kang Y M. Numerical analysis of pressure drop and inertial collection efficiency of a single fiber. China Environ Sci, 2017, 37(4): 1298 doi: 10.3969/j.issn.1000-6923.2017.04.013朱輝, 付海明, 亢燕銘. 單纖維過濾阻力與慣性捕集效率數值分析. 中國環境科學, 2017, 37(4):1298 doi: 10.3969/j.issn.1000-6923.2017.04.013 -