Effects of Cr and Si on the microstructure and solidification path of austenitic stainless steel
-
摘要: 以316Ti奧氏體不銹鋼為基礎,設計不同Cr和Si元素含量的合金成分,結合Thermal-Calc熱力學模擬計算與合金鑄錠凝固組織形貌、成分分析,研究了Cr和Si元素對合金凝固組織構成的影響。研究結果表明,熱力學計算能夠獲得奧氏體不銹鋼中析出δ相的臨界Cr和Si含量。合金凝固時的元素偏析和冷卻過程中的“δ→γ”相變可對δ相析出預測產生一定影響。此外,本工作還針對δ相析出評價了兩種凝固路線判據。Abstract: The lead-cooled fast reactor (LFR), which features advanced technical maturity and enhanced safety, is an important part of the fourth-generation nuclear power system of China. The superior safety of the LFR results from the choice of a relatively inert coolant, the lead or lead-bismuth eutectic (LBE), which can be rather corrosive to common metallic structural materials. Furthermore, there is basically no cladding material available for the LFR. Austenitic stainless steels feature a combination of excellent corrosion resistance, proper strength, and good workability, and materials such as 316Ti and 15-15Ti, which have been used in the sodium-cooled fast reactor (SFR), are viewed as promising candidate materials for LFR cladding applications. Elements of Cr and Si have been found capable of improving the corrosion resistance of 316Ti and 15-15Ti to LBE. However, as ferrite-forming elements, the influences of Cr and Si on the microstructural stability of 316Ti and 15-15Ti are still unclear. In this work, 316Ti-based materials with various Cr and Si contents were studied through thermodynamic simulation and microstructural characterization. Specifically, the equilibrium phase constitutions of the austenitic stainless steels were investigated by thermodynamic simulation using Thermo-Calc. The solidification microstructures and precipitates of Cr- and Si-bearing austenitic stainless steels were studied by optical microscopy (OM), scanning electronic microscopy (SEM), electronic differential system (EDS), and X-ray diffraction (XRD). The results show that Cr and Si can decrease the solidus and liquidus temperatures of alloys and induce the precipitation of δ-phase. For alloy 18Cr?2.0Si?15Ni, the maximum contents of Cr and Si are determined to be no more than 18.8% and 2.55%, respectively, which hinders δ-phase precipitation. In the ingot of 20Cr?2.0Si, δ-phase is found to be located within dendrites in a skeleton morphology, with a volume fraction of 8.6%, whereas in the ingot of 18Cr?2.5Si, δ-phase precipitates between dendrites, with a volume fraction of 3.4%. Moreover, this work also evaluates two kinds of austenitic stainless steel solidification path criteria.
-
表 1 合金設計成分(質量分數)
Table 1. Design compositions of alloys
% 試樣 C Cr Si Mo Ni Ti Cu Mn Fe Cr20?Si2.0 0.06 20 2.0 1.5 15 0.36 1.5 1.5 余量 Cr18?Si2.0 0.06 18 2.0 1.5 15 0.36 1.5 1.5 余量 Cr16?Si2.0 0.06 16 2.0 1.5 15 0.36 1.5 1.5 余量 Cr18?Si2.5 0.06 18 2.5 1.5 15 0.36 1.5 1.5 余量 Cr18?Si1.5 0.06 18 1.5 1.5 15 0.36 1.5 1.5 余量 表 2 合金鑄錠檢測成分(質量分數)
Table 2. Chemical-tested compositions of ingots
% 試樣 C Cr Si Mo Ni Ti Cu Mn N Al Fe Cr20?Si2.0 0.063 19.74 2.01 1.52 15.01 0.36 1.60 1.48 0.0032 0.029 余量 Cr18?Si2.0 0.063 17.71 1.99 1.51 15.30 0.37 1.53 1.48 0.0024 0.030 余量 Cr16?Si2.0 0.066 15.76 2.01 1.50 15.21 0.37 1.54 1.49 0.0022 0.032 余量 Cr18?Si2.5 0.063 17.81 2.51 1.55 15.07 0.39 1.54 1.47 0.0026 0.029 余量 Cr18?Si1.5 0.065 17.73 1.53 1.54 15.22 0.38 1.52 1.49 0.0026 0.031 余量 表 3 設計成分合金的熱力學計算固液相線溫度與凝固溫度區間
Table 3. Thermodynamically calculated liquids and solidus temperatures of alloys
合金 液相線溫度/℃ 固相線溫度/℃ 凝固區間/℃ Cr20?Si2.0 1386 1332 54 Cr18?Si2.0 1394 1340 54 Cr16?Si2.0 1401 1344 57 Cr18?Si2.5 1385 1320 65 Cr18?Si1.5 1402 1350 52 表 4 Cr18?Si2.5合金鑄態組織析出相成分分析(質量分數)
Table 4. EDS analysis result of the Cr18?Si2.5 alloy
% 點 C Si Ti Cr Mn Fe Ni Cu Mo 總計 1 — 1.03 0.38 15.80 1.26 58.15 19.18 2.17 2.03 100 2 — 1.63 — 21.48 2.04 57.81 11.12 1.58 4.33 100 3 21.33 — 57.13 2.60 — 6.18 2.07 — 10.69 100 表 5 合金Ni和Cr當量以及凝固路線判據計算(質量分數)
Table 5. Calculations on the Ni and Cr equivalent contents and solidification path criteria
% 259luxu-164 -
參考文獻
[1] Cheng X Q, Li X G, Du C W. Electrochemical behavior of 316L stainless steel in Cl- containing acetic acid solution under high temperature. Acta Metall Sin, 2006, 42(3): 299 doi: 10.3321/j.issn:0412-1961.2006.03.013程學群, 李曉剛, 杜翠薇. 316L不銹鋼在含Cl-高溫醋酸溶液中的電化學行為. 金屬學報, 2006, 42(3):299 doi: 10.3321/j.issn:0412-1961.2006.03.013 [2] Liu Z D. Common selection of Cr-Ni austenitic stainless steel. Petro-Chem Equip Technol, 1999, 20(3): 39柳曾典. 常用鉻鎳奧氏體不銹鋼的選用. 石油化工設備技術, 1999, 20(3):39 [3] Allen T R, Crawford D C. Lead-cooled fast reactor systems and the fuels and materials challenges. Sci Technol Nucl Ins, 2007, 2007: 97486 [4] Barbier F, Benamati G, Fazio C, et al. Compatibility tests of steels in flowing liquid lead-bismuth. J Nucl Mater, 2001, 295(2-3): 149 doi: 10.1016/S0022-3115(01)00570-0 [5] Lambrinou K, Charalampopoulou E, Van der Donck T, et al. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 ℃. J Nucl Mater, 2017, 490: 9 doi: 10.1016/j.jnucmat.2017.04.004 [6] Johnson A L, Parsons D, Manzerova J, et al. Spectroscopic and microscopic investigation of the corrosion of 316/316L stainless steel by lead-bismuth eutectic (LBE) at elevated temperatures: importance of surface preparation. J Nucl Mater, 2004, 328(2-3): 88 doi: 10.1016/j.jnucmat.2004.03.006 [7] Kurata Y, Futakawa M. Excellent corrosion resistance of 18Cr–20Ni–5Si steel in liquid Pb–Bi. J Nucl Mater, 2004, 325: 217 doi: 10.1016/j.jnucmat.2003.12.009 [8] Kondo M, Takahashi M. Corrosion resistance of Si- and Al-rich steels in flowing lead–bismuth. J Nucl Mater, 2006, 356(1-3): 203 doi: 10.1016/j.jnucmat.2006.05.019 [9] Wang Q C, Ren Y B, Yao C F, et al. Residual ferrite and relationship between composition and microstructure in high-nitrogen austenitic stainless steels. Metall Mater Trans A, 2015, 46(12): 5537 doi: 10.1007/s11661-015-3160-5 [10] Shu W, Li J, Lian X J, et al. Effect of heat treatment on the high temperature ductility of 00Cr24Ni13 austenitic stainless steel casting billets. Chin J Eng, 2015, 37(2): 190舒瑋, 李俊, 廉曉潔, 等. 熱處理對奧氏體不銹鋼00Cr24Ni13鑄坯高溫熱塑性的影響. 工程科學學報, 2015, 37(2):190 [11] Bai G S, Lu S P, Li D Z, et al. Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super304H austenitic stainless steel. Corros Sci, 2015, 90: 347 doi: 10.1016/j.corsci.2014.10.031 [12] Okane T, Umeda T. Eutectic growth of unidirectionally solidified Fe-Cr-Ni alloy. ISIJ Int, 1998, 38(5): 454 doi: 10.2355/isijinternational.38.454 [13] Ferrandini P L, Rios C T, Dutra A T, et al. Solute segregation and microstructure of directionally solidified austenitic stainless steel. Mater Sci Eng A, 2006, 435-436: 139 doi: 10.1016/j.msea.2006.07.024 [14] Brooks J A, Williams J C, Thompson A W. STEM analysis of primary austenite solidified stainless steel welds. Metall Trans A, 1983, 14(1): 23 doi: 10.1007/BF02643733 [15] Fu J W, Sun J J, Cen X, et al. Growth behavior and orientation relationships in AISI 304 stainless steel during directional solidification. Mater Charact, 2018, 139: 241 doi: 10.1016/j.matchar.2018.03.015 [16] Song Y, Baker T N, McPherson N A. A study of precipitation in as-welded 316LN plate using 316L/317L weld metal. Mater Sci Eng A, 1996, 212(2): 228 doi: 10.1016/0921-5093(96)10199-4 [17] Padilha A F, Escriba D M, Materna-Morris E, et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600 C up to 10 years. J Nucl Mater, 2007, 362(1): 132 doi: 10.1016/j.jnucmat.2006.12.027 [18] Gill T P S, Shankar V, Pujar M G, et al. Effect of composition on the transformation of δ-ferrite to σ in type 316 stainless steel weld metals. Scripta Metall Mater, 1995, 32(10): 1595 doi: 10.1016/0956-716X(95)00242-N [19] Sun H Y, Zhou Z J, Wang M, et al. Microstructures and mechanical properties of a new 310 austenitic stainless steel during long term aging. Chin J Eng, 2015, 37(5): 600孫紅英, 周張健, 王曼, 等. 改進310奧氏體不銹鋼長期時效后的組織與性能. 工程科學學報, 2015, 37(5):600 [20] Mataya M C, Nilsson E R, Brown E L, et al. Hot working and recrystallization of as-cast 317L. Metall Mater Trans A, 2003, 34(12): 3021 doi: 10.1007/s11661-003-0201-2 [21] Di Schino A, Mecozzi M G, Barteri M, et al. Solidification mode and residual ferrite in low-Ni austenitic stainless steels. J Mater Sci, 2000, 35(2): 375 doi: 10.1023/A:1004774130483 [22] Fu J W, Yang Y S, Guo J J, et al. Formation of a two-phase microstructure in Fe–Cr–Ni alloy during directional solidification. J Cryst Growth, 2008, 311(1): 132 doi: 10.1016/j.jcrysgro.2008.10.021 [23] Hammer O, Svensson U. Solidification and Casting of Metals. London: The Metals Society, 1979: 401 [24] Rajasekhar K, Harendranath C S, Raman R, et al. Microstructural evolution during solidification of austenitic stainless steel weld metals: A color metallographic and electron microprobe analysis study. Mater Charact, 1997, 38(2): 53 doi: 10.1016/S1044-5803(97)80024-1 -