To reduce NOx emission based on optimizing the existing states of coarse coke breeze during iron ore sintering process
-
摘要: 鐵礦燒結工序作為鋼鐵行業NOx排放的主要來源,在當前高壓環保態勢下減少其NOx排放迫在眉睫。燒結過程NOx主要產生于固體燃料燃燒過程,而粗粒級燃料的賦存形態會影響其NOx排放。基于此,本研究采用可視化微型燒結燃燒裝置研究裸露型和被覆型粗粒級焦粉的燃燒行為,以及優化其配加模式對NOx排放和燒結固結強度的影響規律,并燒結杯實驗研究兼顧NOx減排和燒結產質量指標的適宜粗粒級燃料賦存形態。結果表明,相比裸露型粗粒級焦粉,表面被覆鐵酸鈣細粉時其NOx排放降低約56%;分加粗粒級焦粉以調控其為裸露型時,NOx排放增加約10%,且燒結礦強度降低,而控制粒度為0.5~3.15 mm以調控其為被覆型時,NOx最大體積分數和N元素轉化率分別降低約8%和27%,且燒結各項產質量指標均得到改善。Abstract: With the development of the iron and steel industry, the amount of NOx emissions is increasing year by year, and this causes environmental pollution in forms such as acidic rain and photochemical smog, which greatly threatens human health and social development. The iron and steel industry is one of the major sources of NOx emissions, accounting for more than 10% of the total NOx emissions, and the iron ore sintering process is one of the major sources of NOx emissions in the iron and steel industry, as it accounts for more than 50% of the total emissions of iron and steel plants. Hence, it is extremely urgent to reduce NOx emissions under the current high requirements of environmental protection. Since sintering gas is characterized by large volume, high dust and oxygen content, low NOx concentration, and the presence of SO2, available technologies used in De-NOx have the disadvantages of low efficiency and high investment and cost. Presently, how to cost-effectively reduce the NOx emission of the iron ore sintering process is a new challenge in the iron and steel industry. In the sintering process, NOx is mainly generated in the combustion of solid fuels, which is affected by the existing states of coarse solid fuels. Hence, the combustion behaviors of uncovered and coated coarse coke breeze and the effects of their addition methods on the NOx emission and the bonding strength of the sinter were investigated by the visible micro sintering and combustion equipment. Then, the optimal existing state of coarse coke breeze was explored by sinter pot tests. The results show that compared with the uncovered coarse coke breeze, the NOx emission decreases by 56% when coarse coke breeze is coated with calcium ferrite fines. As the coarse coke breeze is separated and controlled to be in an uncovered state, then it is added into the sintering materials after first mixing process, NOx emission increases by about 56% and the strength of the sinter decreases. The maximum concentration of NOx and conversion rate of N element decrease by 8% and 27%, respectively, when the coke breeze is a coated state by controlling in the size of 0.50?3.15 mm, respectively. The sinter indexes are also improved.
-
Key words:
- iron ore sinter /
- NOx /
- solid fuel /
- existing state /
- combustion behavior /
- adding method
-
圖 8 不同賦存形態粗粒級焦粉燃燒過程其CO排放及其與N元素轉化率間的關系。(a) CO排放規律;(b) CO排放總量與N元素轉化率間的關系
Figure 8. CO emission and correlativity of emission total of CO with conversion rate of N element during the combustion of coarse coke breeze in different existing states: (a) CO emission; (b) relation of emission total of CO and conversion rate of N element
表 1 焦粉的化學成分、熱值及著火溫度
Table 1. Chemical composition, low calorific value, and ignition temperature of coke breeze
燃料種類 工業分析(質量分數)/% 元素分析(質量分數)/% 著火溫度/℃ 低位熱值/ (kJ·kg?1) 固定碳 揮發分 灰分 工業水分 C H N 焦粉 82.19 1.25 12.63 3.93 85.55 0.11 0.97 562.8 29313 表 2 焦粉的粒度組成
Table 2. Size distribution of coke breeze
燃料種類 各粒級所占質量分數/% 平均粒徑/mm >5.0 mm 3.15~5.0 mm 2~3.15 mm 1.0~2.0 mm 0.5~1.0 mm 0.25~0.5 mm 0.15~0.25 mm <0.15 mm 焦粉 2.60 9.70 8.40 16.6 31.4 15.20 11.40 4.70 1.48 表 3 燒結混合料中各物料配比(質量分數)
Table 3. Proportions of raw materials in sinter mixture
% 物料 混勻礦 生石灰 石灰石 白云石 蛇紋石 返礦 焦粉 合計 配比 61.43 3.50 1.37 4.43 0.28 25.00 4.00 100.00 表 4 燒結混合料中各物料的粒度組成(質量分數)
Table 4. Size composition of raw materials in sinter mixture
% 物料 >10 mm 8~10 mm 5~8 mm 3~5 mm 2~3 mm 1~2 mm 0.5~1 mm 0.25~0.5 mm 0.15~0.25 mm <0.15 mm 混勻礦 4.28 4.41 11.24 11.99 9.96 15.67 12.41 9.83 8.10 12.75 生石灰 0 0 0 0.14 1.33 4.15 6.00 12.28 14.24 61.87 石灰石 0 0 0.13 8.99 11.89 19.67 19.89 8.53 5.14 25.74 白云石 0 0 0 3.11 13.96 21.83 18.77 11.13 10.37 20.84 蛇紋石 0 0 0 5.50 14.50 28.45 20.45 12.10 8.35 10.65 返礦 0.49 0.97 20.54 47.61 11.83 9.10 4.79 2.25 2.43 0 表 5 燒結杯實驗結果
Table 5. Results of sinter pot tests
方案 NOx排放指標 燒結產質量指標 NOx最大體積分數/
10?2噸礦NOx排放/
(kg·t?1)垂直燒結速度/
(mm·min?1)成品率/
%燒結利用系數/
(t?m?2?h?1)轉鼓強度+6.3 mm/
%全粒級焦粉 164 0.62 26.81 80.36 2.00 60.00 >0.5 mm焦粉分加 167 0.66 27.14 79.12 2.12 60.67 0.5~3.15 mm焦粉 151 0.45 28.47 80.59 2.18 60.67 259luxu-164 -
參考文獻
[1] Qie J M, Zhang C X, Wang H F, et al. Analysis of emission situation and emission reduction technology of typical sintering flue gas pollutants. Sinter Pelletiz, 2016, 41(6): 59郄俊懋, 張春霞, 王海風, 等. 燒結煙氣典型污染物排放形勢及減排技術分析. 燒結球團, 2016, 41(6):59 [2] Wu S L, Zhang Y Z, Su B, et al. Analysis of main factors affecting NOx emissions in sintering process. Chin J Eng, 2017, 39(5): 693吳勝利, 張永忠, 蘇博, 等. 影響燒結工藝過程NOx排放質量濃度的主要因素解析. 工程科學學報, 2017, 39(5):693 [3] Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767 [4] Suzuki G, Ando R, Yoshikoshi H, et al. A study of the reduction of NOx in the waste gas from sinter plant. Tetsu-to-Hagané, 1975, 61(13): 2775 doi: 10.2355/tetsutohagane1955.61.13_2775 [5] Jin Y L. Analyses about the producing mechanism of NOx during sintering process. Sinter Pelletiz, 2004, 29(5): 6 doi: 10.3969/j.issn.1000-8764.2004.05.002金永龍. 燒結過程中NOx的生成機理解析. 燒結球團, 2004, 29(5):6 doi: 10.3969/j.issn.1000-8764.2004.05.002 [6] Long H M, Xiao J J, Li J X, et al. Formation mechanism and emission reduction methods of nitrogen oxides in sintering process // Proceedings of 9th China Iron and Steel Annual Meeting. Beijing, 2013: 1龍紅明, 肖俊軍, 李家新, 等. 燒結過程氮氧化物的生成機理與減排方法// 第九屆中國鋼鐵年會論文集. 北京, 2013: 1 [7] Lü W, Fan X H, Min X B, et al. Formation of nitrogen mono oxide (NO) during iron ore sintering process. ISIJ Int, 2018, 58(2): 236 doi: 10.2355/isijinternational.ISIJINT-2017-370 [8] Hida Y, Sasaki M, Enokido T, et al. Effect of the existing state of coke breeze in quasi-particles of raw mix on coke combustion in the sintering process. Tetsu-to-Hagané, 1982, 68(3): 400 doi: 10.2355/tetsutohagane1955.68.3_400 [9] Ohno K, Noda K, Nishioka K, et al. Effect of coke combustion rate equation on numerical simulation of temperature distribution in iron ore sintering process. ISIJ Int, 2013, 53(9): 1642 doi: 10.2355/isijinternational.53.1642 [10] Ohno K, Noda K, Nishioka K, et al. Combustion rate of coke in quasi-particle at iron ore sintering process. ISIJ Int, 2013, 53(9): 1588 doi: 10.2355/isijinternational.53.1588 [11] Tobu Y, Nakano M, Nakagawa T, et al. Effect of granule structure on the combustion behavior of coke breeze for iron ore sintering. ISIJ Int, 2013, 53(9): 1594 doi: 10.2355/isijinternational.53.1594 [12] Hou P, Choi S, Yang W, et al. Application of intra-particle combustion model for iron ore sintering bed. Mater Sci Appl, 2011, 2(5): 370 [13] Zhou H, Ma P N, Cheng M, et al. Effects of temperature and circulating flue gas components on combustion and NOx emissions characteristics of four types quasi-particles in iron ore sintering process. ISIJ Int, 2018, 58(9): 1650 doi: 10.2355/isijinternational.ISIJINT-2018-185 [14] Zhou H, Cheng M, Zhao J P, et al. Evaluation of the adhering layer ratio of iron ore granules and its influence on combustion-generated NOx emission in iron ore sintering. J Zhejiang Univ Sci A, 2018, 19(6): 479 doi: 10.1631/jzus.A1700193 [15] Kasai E, Wu S L, Sugiyama T, et al. Combustion rate and NO emission during combustion of coke granules in packed beds. Tetsu-to-Hagané, 1992, 78(7): 1005 doi: 10.2355/tetsutohagane1955.78.7_1005 [16] Hida Y, Sasaki M, Ito K. Consideration on the CO and NO formation around the coke specimen during combustion. Tetsu-to-Hagané, 1980, 66(13): 1801 doi: 10.2355/tetsutohagane1955.66.13_1801 [17] Hida Y, Sasaki M, Ito K, et al. Effect of heat supply on the CO and NO formation in the sintering process of iron ores. Tetsu-to-Hagané, 1981, 67(16): 2625 doi: 10.2355/tetsutohagane1955.67.16_2625 [18] Cen K F, Yao Q, Luo Z Y, et al. Advanced Combustion Science. Hangzhou: Zhejiang University Press, 2002岑可法, 姚強, 駱仲泱, 等. 高等燃燒學. 杭州: 浙江大學出版社, 2002 [19] Zhou H, Zhou M X, Liu Z H, et al. Modeling NOx emission of coke combustion in iron ore sintering process and its experimental validation. Fuel, 2016, 179: 322 doi: 10.1016/j.fuel.2016.03.098 [20] Pan J. Theoretical and Process Studies of the Abatement of Flue Gas Emission During Iron Ore Sintering [Dissertation]. Changsha: Central South University, 2007潘建. 鐵礦燒結煙氣減量排放基礎理論與工藝研究[學位論文]. 長沙: 中南大學, 2007 [21] Wu S L, Sugiyama T, Morioka K, et al. Elimination reaction of NO gas generated from coke combustion in iron ore sinter bed. Tetsu-to-Hagané, 1994, 80(4): 276 doi: 10.2355/tetsutohagane1955.80.4_276 [22] Morioka K, Inaba S, Shimizu M, et al. Primary application of the “In-Bed-de NOx” process using Ca-Fe oxides in iron ore sintering machines. ISIJ Int, 2000, 40(3): 280 doi: 10.2355/isijinternational.40.280 [23] Gan M, Fan X H, Lü W, et al. Fuel pre-granulation for reducing NOx emissions from the iron ore sintering process. Powder Technol, 2016, 301: 478 doi: 10.1016/j.powtec.2016.05.043 -