<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于優化粗粒級固體燃料賦存形態的鐵礦燒結過程NOx減排

闕志剛 吳勝利 艾仙斌

闕志剛, 吳勝利, 艾仙斌. 基于優化粗粒級固體燃料賦存形態的鐵礦燒結過程NOx減排[J]. 工程科學學報, 2020, 42(2): 163-171. doi: 10.13374/j.issn2095-9389.2019.02.21.001
引用本文: 闕志剛, 吳勝利, 艾仙斌. 基于優化粗粒級固體燃料賦存形態的鐵礦燒結過程NOx減排[J]. 工程科學學報, 2020, 42(2): 163-171. doi: 10.13374/j.issn2095-9389.2019.02.21.001
QUE Zhi-gang, WU Sheng-li, AI Xian-bin. To reduce NOx emission based on optimizing the existing states of coarse coke breeze during iron ore sintering process[J]. Chinese Journal of Engineering, 2020, 42(2): 163-171. doi: 10.13374/j.issn2095-9389.2019.02.21.001
Citation: QUE Zhi-gang, WU Sheng-li, AI Xian-bin. To reduce NOx emission based on optimizing the existing states of coarse coke breeze during iron ore sintering process[J]. Chinese Journal of Engineering, 2020, 42(2): 163-171. doi: 10.13374/j.issn2095-9389.2019.02.21.001

基于優化粗粒級固體燃料賦存形態的鐵礦燒結過程NOx減排

doi: 10.13374/j.issn2095-9389.2019.02.21.001
基金項目: 國家自然科學基金資助項目(5190040957);江西省自然科學基金資助項目(20192BAB216018);江西省科學院博士資助項目(2018-YYB-05);普惠制一類資助項目(2018-XTPH1-05)
詳細信息
    通訊作者:

    E-mail: wushengli@ustb.edu.cn

  • 中圖分類號: TF046.4

To reduce NOx emission based on optimizing the existing states of coarse coke breeze during iron ore sintering process

More Information
  • 摘要: 鐵礦燒結工序作為鋼鐵行業NOx排放的主要來源,在當前高壓環保態勢下減少其NOx排放迫在眉睫。燒結過程NOx主要產生于固體燃料燃燒過程,而粗粒級燃料的賦存形態會影響其NOx排放。基于此,本研究采用可視化微型燒結燃燒裝置研究裸露型和被覆型粗粒級焦粉的燃燒行為,以及優化其配加模式對NOx排放和燒結固結強度的影響規律,并燒結杯實驗研究兼顧NOx減排和燒結產質量指標的適宜粗粒級燃料賦存形態。結果表明,相比裸露型粗粒級焦粉,表面被覆鐵酸鈣細粉時其NOx排放降低約56%;分加粗粒級焦粉以調控其為裸露型時,NOx排放增加約10%,且燒結礦強度降低,而控制粒度為0.5~3.15 mm以調控其為被覆型時,NOx最大體積分數和N元素轉化率分別降低約8%和27%,且燒結各項產質量指標均得到改善。

     

  • 圖  1  可視化微型燒結燃燒裝置

    Figure  1.  Schematic diagram of the visible micro sintering and combustion equipment

    圖  2  燃燒實驗中準顆粒試樣

    Figure  2.  Quasi-particles samples of combustion test

    圖  3  燃燒實驗的溫度制度和氣氛

    Figure  3.  Temperature system and atmosphere of combustion test

    圖  4  不同賦存形態粗粒級焦粉的燃燒行為

    Figure  4.  Combustion behavior of different existing states of coarse coke breeze

    圖  5  不同賦存形態粗粒級焦粉燃燒過程其NO排放規律

    Figure  5.  NO emission during the combustion of coarse coke breeze in different existing states

    圖  6  不同賦存形態粗粒級焦粉的燃燒速率變化規律

    Figure  6.  Combustion rates of coarse coke breeze in different existing states

    圖  7  不同賦存形態粗粒級焦粉的燃燒速率與NO體積分數間的關系。(a)Al2O3;(b) CF

    Figure  7.  Relationship between combustion rates and NO volume fraction of different existing states of coarse coke breeze: (a) Al2O3; (b) CF

    圖  8  不同賦存形態粗粒級焦粉燃燒過程其CO排放及其與N元素轉化率間的關系。(a) CO排放規律;(b) CO排放總量與N元素轉化率間的關系

    Figure  8.  CO emission and correlativity of emission total of CO with conversion rate of N element during the combustion of coarse coke breeze in different existing states: (a) CO emission; (b) relation of emission total of CO and conversion rate of N element

    圖  9  不同焦粉粗顆粒配加模式下N元素轉化率和燒結固結強度的變化規律。(a) N元素轉化率;(b) 固結強度

    Figure  9.  Conversion rate of N element and strength of sinter in different adding methods of coarse coke breeze: (a) conversion rate of N element; (b) strength of sinter

    表  1  焦粉的化學成分、熱值及著火溫度

    Table  1.   Chemical composition, low calorific value, and ignition temperature of coke breeze

    燃料種類工業分析(質量分數)/%元素分析(質量分數)/%著火溫度/℃低位熱值/ (kJ·kg?1)
    固定碳揮發分灰分工業水分CHN
    焦粉82.191.2512.633.9385.550.110.97562.829313
    下載: 導出CSV

    表  2  焦粉的粒度組成

    Table  2.   Size distribution of coke breeze

    燃料種類各粒級所占質量分數/%平均粒徑/mm
    >5.0 mm3.15~5.0 mm2~3.15 mm1.0~2.0 mm0.5~1.0 mm0.25~0.5 mm0.15~0.25 mm<0.15 mm
    焦粉2.609.708.4016.631.415.2011.404.701.48
    下載: 導出CSV

    表  3  燒結混合料中各物料配比(質量分數)

    Table  3.   Proportions of raw materials in sinter mixture %

    物料混勻礦生石灰石灰石白云石蛇紋石返礦焦粉合計
    配比61.433.501.374.430.2825.004.00100.00
    下載: 導出CSV

    表  4  燒結混合料中各物料的粒度組成(質量分數)

    Table  4.   Size composition of raw materials in sinter mixture %

    物料>10 mm8~10 mm5~8 mm3~5 mm2~3 mm1~2 mm0.5~1 mm0.25~0.5 mm0.15~0.25 mm<0.15 mm
    混勻礦4.284.4111.2411.999.9615.6712.419.838.1012.75
    生石灰0000.141.334.156.0012.2814.2461.87
    石灰石000.138.9911.8919.6719.898.535.1425.74
    白云石0003.1113.9621.8318.7711.1310.3720.84
    蛇紋石0005.5014.5028.4520.4512.108.3510.65
    返礦0.490.9720.5447.6111.839.104.792.252.430
    下載: 導出CSV

    表  5  燒結杯實驗結果

    Table  5.   Results of sinter pot tests

    方案NOx排放指標 燒結產質量指標
    NOx最大體積分數/
    10?2
    噸礦NOx排放/
    (kg·t?1
    垂直燒結速度/
    (mm·min?1
    成品率/
    %
    燒結利用系數/
    (t?m?2?h?1
    轉鼓強度+6.3 mm/
    %
    全粒級焦粉1640.62 26.8180.362.0060.00
    >0.5 mm焦粉分加1670.66 27.1479.122.1260.67
    0.5~3.15 mm焦粉1510.45 28.4780.592.1860.67
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Qie J M, Zhang C X, Wang H F, et al. Analysis of emission situation and emission reduction technology of typical sintering flue gas pollutants. Sinter Pelletiz, 2016, 41(6): 59

    郄俊懋, 張春霞, 王海風, 等. 燒結煙氣典型污染物排放形勢及減排技術分析. 燒結球團, 2016, 41(6):59
    [2] Wu S L, Zhang Y Z, Su B, et al. Analysis of main factors affecting NOx emissions in sintering process. Chin J Eng, 2017, 39(5): 693

    吳勝利, 張永忠, 蘇博, 等. 影響燒結工藝過程NOx排放質量濃度的主要因素解析. 工程科學學報, 2017, 39(5):693
    [3] Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767

    閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767
    [4] Suzuki G, Ando R, Yoshikoshi H, et al. A study of the reduction of NOx in the waste gas from sinter plant. Tetsu-to-Hagané, 1975, 61(13): 2775 doi: 10.2355/tetsutohagane1955.61.13_2775
    [5] Jin Y L. Analyses about the producing mechanism of NOx during sintering process. Sinter Pelletiz, 2004, 29(5): 6 doi: 10.3969/j.issn.1000-8764.2004.05.002

    金永龍. 燒結過程中NOx的生成機理解析. 燒結球團, 2004, 29(5):6 doi: 10.3969/j.issn.1000-8764.2004.05.002
    [6] Long H M, Xiao J J, Li J X, et al. Formation mechanism and emission reduction methods of nitrogen oxides in sintering process // Proceedings of 9th China Iron and Steel Annual Meeting. Beijing, 2013: 1

    龍紅明, 肖俊軍, 李家新, 等. 燒結過程氮氧化物的生成機理與減排方法// 第九屆中國鋼鐵年會論文集. 北京, 2013: 1
    [7] Lü W, Fan X H, Min X B, et al. Formation of nitrogen mono oxide (NO) during iron ore sintering process. ISIJ Int, 2018, 58(2): 236 doi: 10.2355/isijinternational.ISIJINT-2017-370
    [8] Hida Y, Sasaki M, Enokido T, et al. Effect of the existing state of coke breeze in quasi-particles of raw mix on coke combustion in the sintering process. Tetsu-to-Hagané, 1982, 68(3): 400 doi: 10.2355/tetsutohagane1955.68.3_400
    [9] Ohno K, Noda K, Nishioka K, et al. Effect of coke combustion rate equation on numerical simulation of temperature distribution in iron ore sintering process. ISIJ Int, 2013, 53(9): 1642 doi: 10.2355/isijinternational.53.1642
    [10] Ohno K, Noda K, Nishioka K, et al. Combustion rate of coke in quasi-particle at iron ore sintering process. ISIJ Int, 2013, 53(9): 1588 doi: 10.2355/isijinternational.53.1588
    [11] Tobu Y, Nakano M, Nakagawa T, et al. Effect of granule structure on the combustion behavior of coke breeze for iron ore sintering. ISIJ Int, 2013, 53(9): 1594 doi: 10.2355/isijinternational.53.1594
    [12] Hou P, Choi S, Yang W, et al. Application of intra-particle combustion model for iron ore sintering bed. Mater Sci Appl, 2011, 2(5): 370
    [13] Zhou H, Ma P N, Cheng M, et al. Effects of temperature and circulating flue gas components on combustion and NOx emissions characteristics of four types quasi-particles in iron ore sintering process. ISIJ Int, 2018, 58(9): 1650 doi: 10.2355/isijinternational.ISIJINT-2018-185
    [14] Zhou H, Cheng M, Zhao J P, et al. Evaluation of the adhering layer ratio of iron ore granules and its influence on combustion-generated NOx emission in iron ore sintering. J Zhejiang Univ Sci A, 2018, 19(6): 479 doi: 10.1631/jzus.A1700193
    [15] Kasai E, Wu S L, Sugiyama T, et al. Combustion rate and NO emission during combustion of coke granules in packed beds. Tetsu-to-Hagané, 1992, 78(7): 1005 doi: 10.2355/tetsutohagane1955.78.7_1005
    [16] Hida Y, Sasaki M, Ito K. Consideration on the CO and NO formation around the coke specimen during combustion. Tetsu-to-Hagané, 1980, 66(13): 1801 doi: 10.2355/tetsutohagane1955.66.13_1801
    [17] Hida Y, Sasaki M, Ito K, et al. Effect of heat supply on the CO and NO formation in the sintering process of iron ores. Tetsu-to-Hagané, 1981, 67(16): 2625 doi: 10.2355/tetsutohagane1955.67.16_2625
    [18] Cen K F, Yao Q, Luo Z Y, et al. Advanced Combustion Science. Hangzhou: Zhejiang University Press, 2002

    岑可法, 姚強, 駱仲泱, 等. 高等燃燒學. 杭州: 浙江大學出版社, 2002
    [19] Zhou H, Zhou M X, Liu Z H, et al. Modeling NOx emission of coke combustion in iron ore sintering process and its experimental validation. Fuel, 2016, 179: 322 doi: 10.1016/j.fuel.2016.03.098
    [20] Pan J. Theoretical and Process Studies of the Abatement of Flue Gas Emission During Iron Ore Sintering [Dissertation]. Changsha: Central South University, 2007

    潘建. 鐵礦燒結煙氣減量排放基礎理論與工藝研究[學位論文]. 長沙: 中南大學, 2007
    [21] Wu S L, Sugiyama T, Morioka K, et al. Elimination reaction of NO gas generated from coke combustion in iron ore sinter bed. Tetsu-to-Hagané, 1994, 80(4): 276 doi: 10.2355/tetsutohagane1955.80.4_276
    [22] Morioka K, Inaba S, Shimizu M, et al. Primary application of the “In-Bed-de NOx” process using Ca-Fe oxides in iron ore sintering machines. ISIJ Int, 2000, 40(3): 280 doi: 10.2355/isijinternational.40.280
    [23] Gan M, Fan X H, Lü W, et al. Fuel pre-granulation for reducing NOx emissions from the iron ore sintering process. Powder Technol, 2016, 301: 478 doi: 10.1016/j.powtec.2016.05.043
  • 加載中
圖(9) / 表(5)
計量
  • 文章訪問數:  1641
  • HTML全文瀏覽量:  1389
  • PDF下載量:  46
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-02-21
  • 刊出日期:  2020-02-01

目錄

    /

    返回文章
    返回