<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于捷徑重試規則晶圓帶式搬運系統性能優化

周炳海 陳立揚

周炳海, 陳立揚. 基于捷徑重試規則晶圓帶式搬運系統性能優化[J]. 工程科學學報, 2019, 41(2): 261-268. doi: 10.13374/j.issn2095-9389.2019.02.014
引用本文: 周炳海, 陳立揚. 基于捷徑重試規則晶圓帶式搬運系統性能優化[J]. 工程科學學報, 2019, 41(2): 261-268. doi: 10.13374/j.issn2095-9389.2019.02.014
ZHOU Bing-hai, CHEN Li-yang. Performance optimization of the wafer conveyor handling system using the crossover retrial rule[J]. Chinese Journal of Engineering, 2019, 41(2): 261-268. doi: 10.13374/j.issn2095-9389.2019.02.014
Citation: ZHOU Bing-hai, CHEN Li-yang. Performance optimization of the wafer conveyor handling system using the crossover retrial rule[J]. Chinese Journal of Engineering, 2019, 41(2): 261-268. doi: 10.13374/j.issn2095-9389.2019.02.014

基于捷徑重試規則晶圓帶式搬運系統性能優化

doi: 10.13374/j.issn2095-9389.2019.02.014
基金項目: 

國家自然科學基金資助項目 71471135

詳細信息
    通訊作者:

    周炳海, E-mail: bhzhou@#edu.cn

  • 中圖分類號: TP29

Performance optimization of the wafer conveyor handling system using the crossover retrial rule

More Information
  • 摘要: 開口管樁由于其承載力高、質量可靠、施工方便等優點得到越來越廣泛的應用.土塞的生成使得開口管樁沉樁阻力不同于閉口管樁, 不僅包括樁外側摩阻力、樁端阻力, 樁內側摩阻力亦是其重要組成部分.針對開口管樁沉樁受力特性, 采用自主研發的大尺度模型試驗裝置, 進行不同樁靴形式下開口管樁的貫入試驗, 并與閉口管樁進行對比分析.研究表明, 開口管樁隨沉樁深度的增加趨于閉塞, 沉樁阻力隨沉樁過程基本呈線性增加, 樁內、外側單位摩阻力均存在“側阻退化”效應; 樁體貫入時樁周地表隆起量隨徑向距離增加逐漸減小, 隆起速率隨沉樁深度增加逐漸變緩, 樁周土影響范圍約為5 ~ 7倍樁徑; 樁靴對開口管樁土塞生成、沉樁阻力和擠土效應均有重要影響, 內30°樁靴土塞生成高度、樁內側摩阻力及其所占總沉樁阻力比例最大, 樁周土地表隆起量最小, 外30°樁靴與內30°樁靴情況相反, 直角樁靴居中; 閉口管樁沉樁阻力、外側摩阻力與擠土程度均大于開口管樁.

     

  • 圖  1  基于捷徑的AMHS布局圖

    Figure  1.  AMHS layout with crossover

    圖  2  交叉遺傳操作

    Figure  2.  Cross-genetic operation

    圖  3  NSGA-Ⅱ流程圖

    Figure  3.  Flow chart of NSGA-Ⅱ

    圖  4  不同搬運負荷下的pareto前沿

    Figure  4.  Pareto fronts of different handling loads

    圖  5  μ=15 s時系統的平衡性分析曲線

    Figure  5.  Balance analysis curve of the system of μ=15 s

    圖  6  不同寬放系數下的pareto前沿

    Figure  6.  Pareto fronts of different allowances

    表  1  基于重試搬運策略的AMHS與傳統AMHS的比較

    Table  1.   Comparison of AMHS with crossover retrial rule and traditional AMHS

    μ/s 傳統AMHS 基于重試策略AMHS
    WIP 捷徑成本 WIP 捷徑成本
    13 92 1834 97 1101
    15 113 1834 116 1118
    17 163 1834 164 1320
    下載: 導出CSV

    表  2  μ=15 s情況下的系統各項性能指標與分類

    Table  2.   Performance index and classification of the system of μ=15 s

    編號 捷徑使用策略 WIP 捷徑成本 SD 類別
    1 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0 116 1118 267.9829 1
    2 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0 122 1068 277.4077 1
    3 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0 125 953 303.7867 1
    4 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 133 779 235.0052 2
    5 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0 139 767 201.8698 2
    6 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 142 665 219.7616 1
    7 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0 153 625 154.0412 2
    8 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 154 573 136.7715 2
    9 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0 158 499 208.8783 1
    10 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0 171 439 136.3487 2
    11 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 242 415 233.6606 1
    12 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 271 229 211.319 2
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Nadoli G, Pillai D. Simulation in automated material handling systems design for semiconductor manufacturing//Proceedings of the 1994 Winter Simulation Conference. Lake Buena Vista, 1994: 892
    [2] Davis J. 450 mm wafer transition needs collaboration and standards. Solid State Technol, 2011, 54(6): 14 http://www.researchgate.net/publication/297288526_450mm_wafer_transition_needs_collaboration_and_standards
    [3] Pettinato J S, Pillai D. Technology decisions to minimize 450-mm wafer size transition risk. IEEE Trans Semicond Manuf, 2005, 18(4): 501 doi: 10.1109/TSM.2005.858471
    [4] Bozer Y A, Hsieh Y J. Throughput performance analysis and machine layout for discrete-space closed-loop conveyors. ⅡE Trans, 2005, 37(1): 77 doi: 10.1080/07408170590516971
    [5] Nazzal D, Johnson A, Carlo H J, et al. An analytical model for conveyor based AMHS in semiconductor wafer fabs//Proceedings of the 2008 Winter Simulation Conference. Miami, 2008: 2148
    [6] Nazzal D, Jimenez J A, Carlo H J, et al. An analytical model for conveyor-based automated material handling system with crossovers in semiconductor wafer fabs. IEEE Trans Semicond Manuf, 2010, 23(3): 468 doi: 10.1109/TSM.2010.2051736
    [7] Zhou B H, Chen J X. Queuing-based performance analytical model for continuous flow transporters of AMHS. J Donghua Univ (English Ed), 2013, 30(2): 90 http://www.cnki.com.cn/Article/CJFDTotal-DHDY201302002.htm
    [8] Chen J X, Zhou B H. Performance analysis for continuous AMHS with united layout. Comput Integr Manuf Syst, 2013, 19(6): 1313 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201306019.htm

    陳錦祥, 周炳海. 整體式晶圓連續自動物料搬運系統性能分析. 計算機集成制造系統, 2013, 19(6): 1313 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201306019.htm
    [9] Wang C N, Wang Y H, Hsu H P, et al. Using rotacaster in the heuristic preemptive dispatching method for conveyor-based material handling of 450 mm wafer fabrication. IEEE Trans Semicond Manuf, 2016, 29(3): 230 http://ieeexplore.ieee.org/document/7506080/
    [10] Wang C N, Hsu H P, Tran V V. An improved dispatching method (a-HPDB) for automated material handling system with active rolling belt for 450 mm wafer fabrication. Appl Sci, 2017, 7(8): 780 doi: 10.3390/app7080780
    [11] Hong S, Johnson A L, Carlo H J, et al. Optimising the location of crossovers in conveyor-based automated material handling systems in semiconductor wafer fabs. Int J Prod Res, 2011, 49(20): 6199 doi: 10.1080/00207543.2010.528059
    [12] Lasrado V, Nazzal D. Design of a manufacturing facility layout with a closed loop conveyor with shortcuts using queueing theory and genetic algorithms//Proceedings of the 2011 Winter Simulation Conference. Phoenix, 2011: 1964
    [13] Zhou B H, Chen J X, Zhao M. Performance analysis for continuous flow transporters of Interbay AMHS with priority rules. J Zhejiang Univ Eng Sci, 2015 49(2): 296 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201502018.htm

    周炳海, 陳錦祥, 趙猛. 基于晶圓優先級的連續型Interbay搬運系統性能分析. 浙江大學學報(工學版), 2015, 49(2): 296 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201502018.htm
    [14] Artalejo J R, Gómez-Corral A. Retrial Queueing Systems, A Computational Approach. Heidelberg: Springer-Verlag Berlin Heidelberg, 1999
  • 加載中
圖(6) / 表(2)
計量
  • 文章訪問數:  1053
  • HTML全文瀏覽量:  527
  • PDF下載量:  14
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-12-30
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回