<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

應力比對TC4鈦合金超高周疲勞失效機理的影響

杲寧 李偉

杲寧, 李偉. 應力比對TC4鈦合金超高周疲勞失效機理的影響[J]. 工程科學學報, 2019, 41(2): 254-260. doi: 10.13374/j.issn2095-9389.2019.02.013
引用本文: 杲寧, 李偉. 應力比對TC4鈦合金超高周疲勞失效機理的影響[J]. 工程科學學報, 2019, 41(2): 254-260. doi: 10.13374/j.issn2095-9389.2019.02.013
GAO Ning, LI Wei. Effect of stress ratio on the very high-cycle fatigue failure mechanism of TC4 titanium alloy[J]. Chinese Journal of Engineering, 2019, 41(2): 254-260. doi: 10.13374/j.issn2095-9389.2019.02.013
Citation: GAO Ning, LI Wei. Effect of stress ratio on the very high-cycle fatigue failure mechanism of TC4 titanium alloy[J]. Chinese Journal of Engineering, 2019, 41(2): 254-260. doi: 10.13374/j.issn2095-9389.2019.02.013

應力比對TC4鈦合金超高周疲勞失效機理的影響

doi: 10.13374/j.issn2095-9389.2019.02.013
基金項目: 

國家自然科學基金資助項目 51775043

國家自然科學基金資助項目 51305027

詳細信息
    通訊作者:

    李偉, E-mail: lliw@bit.edu.cn

  • 中圖分類號: TG111.8

Effect of stress ratio on the very high-cycle fatigue failure mechanism of TC4 titanium alloy

More Information
  • 摘要: 采用頻率為100 Hz的電磁諧振疲勞試驗機進行疲勞拉伸試驗, 研究了兩種應力比(R=0. 1和-1) 對TC4鈦合金的超高周疲勞失效機理的影響.結果表明, 兩種應力比下的S-N曲線都呈現"雙線"型, 但各自表示的意義及失效機理不同.當R=0. 1時, TC4鈦合金的疲勞失效形式有兩種, 即由加工缺陷誘發的表面失效和內部魚眼失效, 這兩種失效形式都伴隨著顆粒平面(Facet) 出現; 而當R=-1時, 僅存在表面失效, 且無Facet的出現.基于斷裂力學的討論可知, 在正應力比及真空環境下, 對應小裂紋擴展的門檻值更低, 更有利于裂紋擴展及Facet的形成. TC4鈦合金的整個內部疲勞失效過程及機理可解釋為: (1) 滑移線或滑移帶在部分α晶粒上的出現; (2) 微裂紋的萌生和接合; (3) 顆粒亮區(GBF) 的形成; (4) 魚眼的形成; (5) 魚眼外的失穩裂紋擴展; (6) 最終的瞬時斷裂.

     

  • 圖  1  試樣形狀及尺寸(單位: mm)

    Figure  1.  Shape and dimensions of specimen (unit: mm)

    圖  2  TC4鈦合金的S-N特性

    Figure  2.  S-N property of TC4 titanium alloy

    圖  3  失效斷口形貌圖. (a) R=0.1時的表面失效; (b) R=0.1時的魚眼失效; (c) GBF內的小平面; (d) R=-1時的表面失效

    Figure  3.  Morphology of the fracture surface: (a) surface failure under R=0.1; (b) fisheye failure under R=0.1; (c) facets within GBF; (d) sur-face failure under R=-1

    圖  4  小平面上的滑移線. (a) 表面失效; (b) 內部失效

    Figure  4.  Slip lines on facets: (a) surface failure; (b) interior failure

    圖  5  缺陷或裂紋尺寸與應力幅值的關系. (a) 表面失效; (b) 內部失效

    Figure  5.  Relationships between defect or crack size and stress amplitude: (a) surface failure; (b) interior failure

    圖  6  ΔKNf的關系. (a) 小裂紋擴展; (b) 長裂紋擴展

    Figure  6.  Relationships between ΔK and Nf: (a) small crack growth; (b) long crack growth

    圖  7  超高周疲勞的內部失效機制. (a) TC4鈦合金的微觀組織; (b) α晶粒內的滑移線或滑移帶; (c) 微裂紋的萌生與接合; (d) GBF的形成; (e) 裂紋穩定擴展及魚眼形成; (f) 裂紋失穩擴展直至最終斷裂

    Figure  7.  Interior failure mechanism in a very high-cycle fatigue regime: (a) microstructure of TC4 titanium; (b) slip lines or bands inαgrains; (c) mirco-crack initiation and coalescence; (d) formation of GBF; (e) stable crack growth and formation of fisheye; (f) unstable crack growth until final fracture

    表  1  TC4鈦合金的化學組成(質量分數)

    Table  1.   Chemical composition of TC4?%

    Fe C N H O Al V Ti
    0.3 0.1 0.05 0.015 0.2 6.1 4.0 余量
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] McEvily A J, Nakamura T, Oguma H, et al. On the mechanism of very high cycle fatigue in Ti-6Al-4V. Scripta Mater, 2008, 59(11): 1207 doi: 10.1016/j.scriptamat.2008.08.012
    [2] Oguma H, Nakamura T. The effect of microstructure on very high cycle fatigue properties in Ti-6Al-4V. Scripta Mater, 2010, 63(1): 32 doi: 10.1016/j.scriptamat.2010.02.043
    [3] Stanzl-Tschegg S E, Mayer H. Fatigue and fatigue crack growth of aluminium alloys at very high numbers of cycles. Int J Fatigue, 2001, 23(Suppl 1): 231 http://www.sciencedirect.com/science/article/pii/S0142112301001670
    [4] Deng H L, Li W, Sun Z D, et al. A prediction model for the very high cycle fatigue life for inclusion-FGA (fine granular area)-fisheye induced fatigue failure. Chin J Eng, 2017, 39(4): 567 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704012.htm

    鄧海龍, 李偉, 孫振鐸, 等. 基于夾雜-細晶粒區-魚眼疲勞失效的超長壽命預測模型. 工程科學學報, 2017, 39(4): 567 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704012.htm
    [5] Liu X L, Sun C Q, Zhou Y T, et al. Effects of microstructure and stress ratio on high-cycle and very high cycle fatigue behavior of Ti-6Al-4V alloy. Acta Metall Sin, 2016, 52(8): 923 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201608004.htm

    劉小龍, 孫成奇, 周硯田, 等. 微結構和應力比對Ti-6Al-4V高周和超高周疲勞行為的影響. 金屬學報, 2016, 52(8): 923 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201608004.htm
    [6] Crupi V, Epasto G, Guglielmino E, et al. Influence of microstructure[alpha+beta and beta] on very high cycle fatigue behavior of Ti-6Al-4V alloy. Int J Fatigue, 2017, 95: 64 doi: 10.1016/j.ijfatigue.2016.10.002
    [7] Sakai T, Takeda M, Shiozawa K, et al. Experimental reconfirmation of characteristic S-N property for high carbon chromium bearing steel in wide life region in rotating bending. J Soc Mater Sci Jpn, 2000, 49(7): 779 doi: 10.2472/jsms.49.779
    [8] Shiozawa K, Lu L, Ishihara S. S-N curve characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct, 2001, 24(12): 781 doi: 10.1046/j.1460-2695.2001.00459.x
    [9] Shiozawa K, Murai M, Shimatani Y, et al. Transition of fatigue failure mode of Ni-Cr-Mo low-alloy steel in very high cycle regime. Int J Fatigue, 2010, 32(3): 541 doi: 10.1016/j.ijfatigue.2009.06.011
    [10] Yu Y, Gu J L, Bai B Z, et al. Very high cycle fatigue mechanism of carbide-free bainite/martensite steel micro-alloyed with Nb. Mater Sci Eng A, 2009, 527(1-2): 212 doi: 10.1016/j.msea.2009.08.024
    [11] Xu X X, Yu Y, Cui W L, et al. Ultra-high cycle fatigue behavior of high strength steel with carbide-free bainite/martensite complex mircrostructure. Int J Miner Metall Mater, 2009, 16(3): 285 doi: 10.1016/S1674-4799(09)60051-0
    [12] Neal D F, Blenkinsop P A. Internal fatigue origins in two alpha-beta titanium alloys. Acta Metall, 1976, 24(1): 59 doi: 10.1016/0001-6160(76)90147-4
    [13] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng A, 1998, 243(1-2): 32 doi: 10.1016/S0921-5093(97)00778-8
    [14] Bache M R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions. Int J Fatigue, 2003, 25(9-11): 1079 doi: 10.1016/S0142-1123(03)00145-2
    [15] Li W, Sakai T, Li Q, et al. Effect of loading type on fatigue properties of high strength bearing steel in very high cycle regime. Mater Sci Eng A, 2011, 528(15): 5044 doi: 10.1016/j.msea.2011.03.020
    [16] Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. 1st ed. Oxford: Elsevier Science Ltd, 2002
    [17] Sakai T, Sato Y, Oguma N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct, 2002, 25(8-9): 765 doi: 10.1046/j.1460-2695.2002.00574.x
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  1042
  • HTML全文瀏覽量:  525
  • PDF下載量:  46
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-01-19
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回