Effect of manganese addition on resistance to pitting corrosion of duplex stainless steel S32205
-
摘要: 研究錳元素對2205雙相不銹鋼耐點蝕性能的影響, 錳質量分數的變化范圍為0. 93%~1. 26%.分別采用化學腐蝕法、動電位極化法研究雙相不銹鋼2205的耐腐蝕性能, 采用夾雜物自動分析技術研究錳對鋼中夾雜物種類及數量的影響, 通過掃描電鏡、能譜及夾雜物原位分析法觀察化學腐蝕及電化學腐蝕前后鋼中夾雜物及其周圍鋼基體的變化情況.采用電感耦合等離子體發光光譜測定腐蝕產物的成分.研究結果表明, 不同類型的夾雜物對耐腐蝕性能的影響不同, (Mn、Si) 氧化物以及(Mn、Si、Cr) 氧硫化物在腐蝕液中更易溶解進而促進腐蝕, 而(Cr、Mn、Al) 氧化物卻很穩定.錳的加入會促進鋼中(Cr、Mn、Al) 夾雜的析出, 此類夾雜物不僅自身很容易被含Cl離子的溶液腐蝕, 而且作為點蝕的起始點, 促進了點蝕坑的形成, 加快了基體腐蝕, 最終導致不銹鋼耐點蝕性能的下降.Abstract: Duplex stainless steel (DSS) has been applied to marine industries, chemical plants, and nuclear facilities because of its high mechanical strength, good weldability, good resistance to pitting corrosion in various aggressive environments, and relatively low cost than similar-performance materials. However, with the decline of iron and steel industries, the competition among stainless steel products is becoming fierce. To reduce the costs of stainless steel, enterprises have attempted to replace high-priced alloy elements with low-priced alloy elements. Thus, the project of substituting manganese for nickel has attracted considerable attention. In this study, effect of manganese addition in the range of 0. 93%-1. 26% on the resistance to pitting corrosion of duplex stainless steel in chloride medium was investigated. Chemical corrosion and potentiodynamic anodic polarization tests were conducted to assess the resistance to pitting corrosion. Categories and number of inclusions were analyzed using inclusion automatic analysis technology. Changes of inclusions before or after chemical and electrochemical corrosion were observed using in situ observation, scanning electron microscope and energy dispersive spectrometer analysis. Inductively coupled plasma test was conducted to analyze compositions of corrosion products. The results indicate that different inclusions have different effects on pitting corrosion. Types of (Mn, Si) oxides and complex inclusions of (Mn, Si, and Cr) oxysulfides are dissolved, which accelerates the corrosion process. However, the types of (Cr, Mn, and Al) oxides are stable in similar environment. The addition of manganese leads to the deterioration of the resistance of dplex stainless steel to pitting corrosion because manganese accelerates the formation of (Mn, Si) oxides that act as initial locations of pitting corrosion in chlorine ion corrosion environment. Dissolved inclusions help to expose fresh matrix to etchant solution, accelerating the corrosion ofthe matrix. Thus, the corrosion of the duplex stainless steel matrix is more serious than that of the inclusions.
-
Key words:
- duplex stainless steel /
- pitting corrosion /
- inclusion /
- chemical corrosion /
- matrix
-
表 1 不同實驗材料的化學成分(質量分數)
Table 1. Chemical compositions of experimental alloys?
% 試樣 C Si Mn P S Cr Ni Mo Cu N Fe 點蝕當量 樣品1 0.018 0.34 0.93 0.025 0.0031 22.47 5.39 3.06 0.15 0.163 余量 35.31 樣品2 0.019 0.32 1.04 0.024 0.0027 22.81 5.30 2.94 0.15 0.168 余量 35.20 樣品3 0.014 0.32 1.16 0.025 0.0033 22.69 5.39 2.85 0.15 0.172 余量 34.85 樣品4 0.015 0.30 1.26 0.024 0.0029 22.72 5.35 2.90 0.15 0.165 余量 34.93 259luxu-164 -
參考文獻
[1] Garfias-Mesias L F, Sykes J M, Tuck C D S. The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions. Corros Sci, 1996, 38(8): 1319 doi: 10.1016/0010-938X(96)00022-4 [2] Momeni A, Kazemi S, Bahrani A. Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining. Int J Miner Metall Mater, 2013, 20(10): 953 doi: 10.1007/s12613-013-0820-6 [3] Cheng X Q, Li C T, Dong C F, et al. Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy. Int J Miner Metall Mater, 2011, 18(1): 42 doi: 10.1007/s12613-011-0397-x [4] Deng B, Jiang Y M, Xu J L, et al. Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101. Corros Sci, 2010, 52(3): 969 doi: 10.1016/j.corsci.2009.11.020 [5] Olsson J, Snis M. Duplex-A new generation of stainless steels for desalination plants. Desalination, 2007, 205(1-3): 104 doi: 10.1016/j.desal.2006.02.051 [6] Wu J. Duplex Stainless Steel. Beijing: Metallurgy Industry Press, 2000吳玖. 雙相不銹鋼. 北京: 冶金工業出版社, 2000 [7] Yang S M, Chen Y C, Chen C H, et al. Microstructural characterization of δ/γ/σ/γ2/χ phases in silver-doped 2205 duplex stainless steel under 800℃ aging. J Alloys Compd, 2015, 633: 48 doi: 10.1016/j.jallcom.2015.01.165 [8] Pohl M, Storz O, Glogowski T. Effect of intermetallic precipitations on the properties of duplex stainless steel. Mater Charact, 2007, 58(1): 65. doi: 10.1016/j.matchar.2006.03.015 [9] Merello R, Botana F J, Botalla J, et al. Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn-N duplex stainless steels. Corros Sci, 2003, 45(5): 909 doi: 10.1016/S0010-938X(02)00154-3 [10] Westin E M, Olsson C O A, Hertzman S. Weld oxide formation on lean duplex stainless steel. Corros Sci, 2008, 50(9): 2620 doi: 10.1016/j.corsci.2008.06.024 [11] Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101. Acta Metall Sin, 2018, 54(4): 485 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201804001.htm蘇煜森, 楊銀輝, 曹建春, 等. 節Ni型2101雙相不銹鋼的高溫熱加工行為研究. 金屬學報, 2018, 54(4): 485 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201804001.htm [12] Fang Y L, Liu Z Y, Zhang W N, et al. Microstructure evolution of lean duplex stainless steel 2101 during hot deformation. Acta Metall Sin, 2010, 46(6): 641 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201006002.htm方軼琉, 劉振宇, 張維娜, 等. 節約型雙相不銹鋼2101高溫變形過程中微觀組織演化. 金屬學報, 2010, 46(6): 641 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201006002.htm [13] Ueji R, Tsuchida N, Terada D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scripta Mater, 2008, 59(9): 963 doi: 10.1016/j.scriptamat.2008.06.050 [14] Calcagnotto M, Ponge D, Raabe D. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall Mater Trans A, 2012, 43(1): 37 doi: 10.1007/s11661-011-0828-3 [15] Tsukatani I, Hashimoto S, Inoue T. Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite. ISIJ Int, 1991, 31(9): 992 doi: 10.2355/isijinternational.31.992 [16] An L C, Cao J, Wu L C, et al. Effects of Mo and Mn on pitting behavior of duplex stainless steel. J Iron Steel Res Int, 2016, 23(12): 1333 doi: 10.1016/S1006-706X(16)30196-0 [17] Toor I, Hyun P J, Kwon H S. Development of high Mn-N duplex stainless steel for automobile structural components. Corros Sci, 2008, 50(2): 404 doi: 10.1016/j.corsci.2007.07.004 [18] Li J, Xu Y L, Xiao X S, et al. A new resource-saving, high manganese and nitrogen super duplex stainless steel 25Cr-2Ni-3Mo-xMn-N. Mater Sci Eng A, 2009, 527(1-2): 245 doi: 10.1016/j.msea.2009.07.065 [19] Diederichs R, Bleck W. Modelling of manganese sulphide formation during solidification, part I: description of MnS formation parameters. Steel Res Int, 2006, 77(3): 202 doi: 10.1002/srin.200606375 [20] Oikawa K, Ishida K, Nishizawa T. Effect of titanium addition on the formation and distribution of MnS inclusions in steel during solidification. ISIJ Int, 1997, 37(4): 332 doi: 10.2355/isijinternational.37.332 [21] Shao X J, Wang X H, Wang W J, et al. In-situ observation of manganese sulfide inclusions in YF45MnV steel. J Univ Sci Technol Beijing, 2010, 32(5): 570 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201005004.htm邵肖靜, 王新華, 王萬軍, 等. 硫化錳夾雜物在YF45MnV鋼中行為的原位觀察. 北京科技大學學報, 2010, 32(5): 570 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201005004.htm [22] Webb E G, Suter T, Alkire R C. Microelectrochemical measurements of the dissolution of single MnS inclusions, and the prediction of the critical conditions for pit initiation on stainless steel. J Electrochem Soc, 2001, 148(5): B186 doi: 10.1149/1.1360205 [23] Lillard R S, Kashfipour M A, Niu W. Pit propagation at the boundary between manganese sulfide inclusions and austenitic stainless steel 303 and the role of copper. J Electrochem Soc, 2016, 163(8): C440 doi: 10.1149/2.0461608jes [24] Ha H Y, Park C J, Kwon H S. Effects of misch metal on the formation of non-metallic inclusions and the associated resistance to pitting corrosion in 25% Cr duplex stainless steels. Scripta Mater, 2006, 55(11): 991 doi: 10.1016/j.scriptamat.2006.08.014 [25] Williams D E, Zhu Y Y. Explanation for initiation of pitting corrosion of stainless steels at sulfide inclusions. J Electrochem Soc, 2000, 147(5): 1763 doi: 10.1149/1.1393431 [26] Williams D E, Mohiuddin T F, Zhu Y Y. Elucidation of a trigger mechanism for pitting corrosion of stainless steels using submicron resolution scanning electrochemical and photoelectrochemical microscopy. J Electrochem Soc, 1998, 145(8): 2664 doi: 10.1149/1.1838697 [27] Ohta H, Suito H. Activities in CaO-SiO2-Al2O3 slags and deoxidation equilibria of Si and Al. Metall Mater Trans B, 1996, 27(6): 943 doi: 10.1007/s11663-996-0008-9 [28] Zheng J C, Hu X J, Pan C, et al. Effects of inclusions on the resistance to pitting corrosion of S32205 duplex stainless steel. Mater Corros, 2018, 69(5): 572 doi: 10.1002/maco.201709723 [29] Amadou T, Sidhom H, Braham C. Double loop electrochemical potentiokinetic reactivation test optimization in checking of duplex stainless steel intergranular corrosion susceptibility. Metall Mater Trans A, 2004, 35(11): 3499 doi: 10.1007/s11661-004-0187-4 [30] Deng B, Jiang Y M, Xu J L, et al. Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101. Corros Sci, 2010, 52(3): 969 doi: 10.1016/j.corsci.2009.11.020 -