<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鈀摻雜α-MnO2無溶劑下催化氧化苯甲醇的性能

黃秀兵 王靜靜 鄭海燕 路桂隆 王鵬

黃秀兵, 王靜靜, 鄭海燕, 路桂隆, 王鵬. 鈀摻雜α-MnO2無溶劑下催化氧化苯甲醇的性能[J]. 工程科學學報, 2019, 41(2): 230-237. doi: 10.13374/j.issn2095-9389.2019.02.010
引用本文: 黃秀兵, 王靜靜, 鄭海燕, 路桂隆, 王鵬. 鈀摻雜α-MnO2無溶劑下催化氧化苯甲醇的性能[J]. 工程科學學報, 2019, 41(2): 230-237. doi: 10.13374/j.issn2095-9389.2019.02.010
HUANG Xiu-bing, WANG Jing-jing, ZHENG Hai-yan, LU Gui-long, WANG Peng. Catalytic performance of Pd-doped α-MnO2 for oxidation of benzyl alcohol under solvent-free conditions[J]. Chinese Journal of Engineering, 2019, 41(2): 230-237. doi: 10.13374/j.issn2095-9389.2019.02.010
Citation: HUANG Xiu-bing, WANG Jing-jing, ZHENG Hai-yan, LU Gui-long, WANG Peng. Catalytic performance of Pd-doped α-MnO2 for oxidation of benzyl alcohol under solvent-free conditions[J]. Chinese Journal of Engineering, 2019, 41(2): 230-237. doi: 10.13374/j.issn2095-9389.2019.02.010

鈀摻雜α-MnO2無溶劑下催化氧化苯甲醇的性能

doi: 10.13374/j.issn2095-9389.2019.02.010
基金項目: 

國家自然科學基金資助項目 51802015

中央高校基本科研業務費資助項目 FRF-TP-16-028A1

北京市青年骨干個人項目資助項目 2017000020124G090

詳細信息
    通訊作者:

    黃秀兵, E-mail: xiubinghuang@ustb.edu.cn

  • 中圖分類號: TB332

Catalytic performance of Pd-doped α-MnO2 for oxidation of benzyl alcohol under solvent-free conditions

More Information
  • 摘要: 通過共沉淀和原位煅燒轉化方法, 將Pd摻雜δ-MnO2前驅體煅燒后制備得到Pd摻雜α-MnO2納米棒催化材料.通過氮氣物理吸附、X射線衍射、透射電子顯微鏡、掃描電子顯微鏡、熱重分析、X射線光電子能譜等技術對催化材料進行了表征.掃描電鏡和透射電鏡結果顯示, α-MnO2納米棒表面沒有明顯的Pd納米顆粒, 表明Pd可能摻雜到α-MnO2晶格中.純α-MnO2的還原溫度在390℃左右, 但Pd摻雜可以極大地促進α-MnO2還原, 還原溫度可低至約200℃左右.研究了所制備催化劑在無溶劑條件下對于以分子氧為氧化劑選擇性催化氧化苯甲醇為苯甲醛的催化性能.結果表明: 在無溶劑及用純氧氣為氧化劑條件下, Pd摻雜α-MnO2納米棒對苯甲醇氧化顯示出增強的催化活性; 所摻雜的氧化態Pd物質可增強催化材料中的氧遷移率; 在這些Pd摻雜α-MnO2催化材料中, 當以Pd (3%, 質量分數) -MnO2為催化劑時, 在110℃反應4 h后, 苯甲醇的轉化率為39%, 遠高于同條件下以純α-MnO2為催化劑時18. 3%的苯甲醇轉化率.

     

  • 圖  1  X射線衍射圖. (a) α-MnO2; (b) Pd (1%) -MnO2; (c) Pd (2%) -MnO2; (d) Pd (3%) -MnO2

    Figure  1.  XRD patterns: (a) α-MnO2; (b) Pd (1%) -MnO2; (c) Pd (2%) -MnO2; (d) Pd (3%) -MnO2

    圖  2  掃描電鏡照片. (a) α-MnO2; (b) Pd (1%) -MnO2; (c) Pd (2%) -MnO2; (d) Pd (3%) -MnO2

    Figure  2.  SEM images: (a) α-MnO2; (b) Pd (1%) -MnO2; (c) Pd (2%) -MnO2; (d) Pd (3%) -MnO2

    圖  3  透射電鏡照片. (a, b) α-MnO2; (c, d) Pd (3%) -MnO2

    Figure  3.  TEM images: (a, b) α-MnO2; (c, d) Pd (3%) -MnO2

    圖  4  所制備催化材料在5%H2/Ar條件下的熱重曲線(升溫速率: 10℃·min-1)

    Figure  4.  TGA curves of catalysts under 5%H2/Ar with increasing rate of 10℃·min-1

    圖  5  Pd 3d X射線光電子能譜譜圖. (a) Pd (1%) -MnO2; (b) Pd (2%) -MnO2; (c) Pd (3%) -Mn O2

    Figure  5.  Pd 3d XPS spectra: (a) Pd (1%) -MnO2; (b) Pd (2%) -MnO2; (c) Pd (3%) -MnO2

    圖  6  Mn 2p X射線光電子能譜譜圖. (a) α-MnO2; (b) Pd (1%) -MnO2; (c) Pd (2%) -MnO2; (d) Pd (3%) -Mn O2

    Figure  6.  Mn 2p XPS spectra: (a) α-MnO2; (b) Pd (1%) -MnO2; (c) Pd (2%) -MnO2; (d) Pd (3%) -MnO2

    圖  7  O 1s X射線光電子能譜譜圖. (a) α-MnO2; (b) Pd (1%) -MnO2; (c) Pd (2%) -MnO2; (d) Pd (3%) -MnO2

    Figure  7.  O 1s XPS spectra: (a) α-MnO2; (b) Pd (1%) -Mn O2; (c) Pd (2%) -MnO2; (d) Pd (3%) -MnO2

    圖  8  用Pd摻雜α-MnO2納米棒作為催化劑時苯甲醇氧化的反應路徑

    Figure  8.  Reaction processes of benzyl alcohol oxidation using Pd-dopedα-Mn O2 nanorods

    圖  9  苯甲醇的轉化率和苯甲醛的選擇性隨著反應溫度及反應時間的變化曲線

    Figure  9.  Conversion of benzyl alcohol and selectivity of benzaldehyde dependent on reaction temperature and time

    表  1  樣品的元素含量結果

    Table  1.   Element content results of as-prepared samples

    樣品名稱 元素質量分數/%
    O Mn K Pd
    α-MnO2 39.70 51.71 8.59 0
    Pd(1%)-MnO2 34.72 55.04 9.45 0.79
    Pd(2%)-MnO2 32.28 56.32 9.71 1.69
    Pd(3%)-MnO2 30.03 57.90 10.32 1.75
    下載: 導出CSV

    表  2  所制備催化材料在不同條件下的催化性能

    Table  2.   Catalytic performance of as-prepared catalysts under different conditions

    序號 催化劑 溫度/℃ 氣氛 轉化率/% 選擇性/% 產率/%
    1 無催化劑 110 氧氣 <0.1 >99.9 <0.1
    2 α-MnO2 110 氧氣 18.3 >99.9 18.3
    3 Pd(1%)-MnO2 110 氧氣 26.0 87.8 22.8
    4 Pd(2%)-MnO2 110 氧氣 34.3 80.3 27.5
    5 Pd(3%)-MnO2 110 氧氣 39.0 85.7 33.4
    6 Pd(3%)-MnO2 110 空氣 24.9 96.6 24.1
    7 Pd(3%)-MnO2 110 氮氣 6.5 >99.9 6.5
    8 Pd(3%)-MnO2 100 氧氣 16.5 96.6 15.9
    9 Pd(3%)-MnO2 120 氧氣 56.6 62.5 35.4
    注: 催化反應條件為10 mg催化劑, 20 mmol苯甲醇, 101.325 kPa, 4 h.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xu C, Zhang C H, Li H, et al. An overview of selective oxidation of alcohols: catalysts, oxidants and reaction mechanisms. Catal Surveys Asia, 2016, 20(1): 13 doi: 10.1007/s10563-015-9199-x
    [2] Kotai L, Kazinczy B, Keszler A, et al. Three reagents in one: ammonium permanganate in the oxidation of benzyl alcohol. Z Naturforsch B, 2001, 56(8): 823 doi: 10.1515/znb-2001-0816
    [3] Wu Z Y, Huang X B, Zheng H Y, et al. Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light. Appl Catal B-Environ, 2018, 224: 479 doi: 10.1016/j.apcatb.2017.10.034
    [4] Li H, Qin F, Yang Z P, et al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J Am Chem Soc, 2017, 139(9): 3513 doi: 10.1021/jacs.6b12850
    [5] Mandal S, Chowdhury B. Solvent-free benzyl alcohol oxidation reaction over Sm-CeO2 supported gold nanoparticle using tert-butyl hydroperoxide (TBHP) as an oxidant. Nat Resour Eng, 2016, 1(2): 43 doi: 10.1080/23802693.2016.1215630
    [6] Renuka M K, Gayathri V. A polymer supported Cu(Ⅱ) catalyst for oxidative amidation of benzyl alcohol and substituted amines in TBHP/H2O. Catal Commun, 2018, 104: 71 doi: 10.1016/j.catcom.2017.10.023
    [7] Hong Y L, Jiang X L, Huang J L, et al. Biosynthesized bimetallic Au-Pd nanoparticles supported on TiO2 for solvent-free oxidation of benzyl alcohol. ACS Sustainable Chem Eng, 2014, 2(7): 1752 doi: 10.1021/sc500181z
    [8] Galvanin F, Sankar M, Cattaneo S, et al. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chem Eng J, 2018, 342: 196 doi: 10.1016/j.cej.2017.11.165
    [9] Li T B, Liu F, Tang Y, et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew Chem Int Ed, 2018, 57(26): 7795 doi: 10.1002/anie.201803272
    [10] Weerachawanasak P, Hutchings G J, Edwards J K, et al. Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catal Today, 2015, 250: 218 doi: 10.1016/j.cattod.2014.06.005
    [11] Xin P Y, Li J, Xiong Y, et al. Revealing the active species for aerobic alcohol oxidation by using uniform supported palladium catalysts. Angew Chem Int Ed, 2018, 57(17): 4642 doi: 10.1002/anie.201801103
    [12] Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science, 2006, 311(5759): 362 doi: 10.1126/science.1120560
    [13] Zhu Y, Zhang S R, Shan J J, et al. In situ surface chemistries and catalytic performances of ceria doped with palladium, platinum, and rhodium in methane partial oxidation for the production of syngas. ACS Catal, 2013, 3(11): 2627 doi: 10.1021/cs400070y
    [14] Jin Z, Nackashi D, Lu W, et al. Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem Mater, 2010, 22(20): 5695 doi: 10.1021/cm102187a
    [15] Biswas S, Dutta B, Mullick K, et al. Aerobic oxidation of amines to imines by cesium-promoted mesoporous manganese oxide. ACS Catal, 2015, 5(7): 4394 doi: 10.1021/acscatal.5b00325
    [16] Dutta B, Biswas S, Sharma V, et al. Mesoporous manganese oxide catalyzed aerobic oxidative coupling of anilines to aromatic azo compounds. Angew Chem Int Ed, 2016, 55(6): 2171 doi: 10.1002/anie.201508223
    [17] Li Z, Wang L, Yun L, et al. Activity and antitoxic properties of Cr-MnOx/TiO2-ZrO2 for low-temperature selective catalytic reduction of NO. Chin J Eng, 2015, 37(8): 1049 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201508012.htm

    李哲, 汪莉, 贠麗, 等. Cr-MnOx/TiO2-ZrO2低溫選擇催化還原NO的活性及抗毒性能. 工程科學學報, 2015, 37(8): 1049 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201508012.htm
    [18] Alhumaimess M, Lin Z J, He Q, et al. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chem Eur J, 2014, 20(6): 1701 doi: 10.1002/chem.201303355
    [19] Ragupathy P, Park D H, Campet G, et al. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C, 2009, 113(15): 6303 doi: 10.1021/jp811407q
    [20] Ousmane M, Perrussel G, Yan Z, et al. Highly selective direct amination of primary alcohols over a Pd/K-OMS-2 catalyst. J Catal, 2014, 309: 439 doi: 10.1016/j.jcat.2013.10.003
    [21] Hegde M S, Bera P. Noble metal ion substituted CeO2 catalysts: Electronic interaction between noble metal ions and CeO2 lattice. Catal Today, 2015, 253: 40 doi: 10.1016/j.cattod.2015.03.035
    [22] Hensley A J R, Hong Y C, Zhang R Q, et al. Enhanced Fe2O3 reducibility via surface modification with Pd: characterizing the synergy within Pd/Fe catalysts for hydrodeoxygenation reactions. ACS Catal, 2014, 4(10): 3381 doi: 10.1021/cs500565e
    [23] Gentry S J, Hurst N W, Jones A. Study of the promoting influence of transition metals on the reduction of cupric oxide by temperature programmed reduction. J Chem Soc, Faraday Trans 1, 1981, 77(3): 603 doi: 10.1039/f19817700603
    [24] Gulyaev R V, Kardash T Y, Malykhin S E, et al. The local structure of PdxCe1-xO2-x-δ solid solutions. Phys Chem Chem Phys, 2014, 16(26): 13523 doi: 10.1039/C4CP01033G
    [25] Dupin J C, Gonbeau D, Vinatier P, et al. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys, 2000, 2(6): 1319 doi: 10.1039/a908800h
    [26] Makwana V D, Son Y C, Howell A R, et al. The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: a kinetic and isotope-labeling study. J Catal, 2002, 210(1): 46 doi: 10.1006/jcat.2002.3680
    [27] Dimitratos N, Lopez-Sanchez J A, Morgan D, et al. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilization. Phys Chem Chem Phys, 2009, 11(25): 5142 doi: 10.1039/b900151b
    [28] Zhang Y, Qi X J, Cui X J, et al. Palladium catalyzed N-alkylation of amines with alcohols. Tetrahedron Lett, 2011, 52(12): 1334 doi: 10.1016/j.tetlet.2011.01.059
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  995
  • HTML全文瀏覽量:  396
  • PDF下載量:  34
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-09-10
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回