-
摘要: 采用真空熔煉法, 經急冷和緩冷兩種不同冷卻條件制備了Te系化合物TeAsGeSi合金粉體.通過X射線衍射分析, 急冷工藝制備粉體呈非晶態, 緩冷工藝制備的粉體呈晶態, 結晶主相為R-3m空間群的As2GeTe4; 差熱-熱重分析顯示, 升溫至350℃時緩冷粉體As2GeTe4成分熔融, 400℃時兩種粉體均開始快速失重, 為避免制備過程中發生材料熔融及揮發損失, 確定燒結溫度不超過340℃.采用真空熱壓法制備TeAsGeSi合金靶材, 將兩種粉體分別升溫至340℃, 加壓20 MPa, 保溫2 h制備出兩種靶材, 其中緩冷粉體制備的靶材致密度高, 為5. 46 g·cm-3, 達混合理論密度的99. 5%, 形貌表征顯示此靶材表面平整, 孔洞少, 元素分布均勻.Abstract: When a certain threshold switching voltage is applied to a semiconductor of Te-based compound in a high-impedance amorphous state, the semiconductor transits into a low-resistance state, and the resistance difference is more than five orders of magnitude. Therefore, TeAsGeSi material can be prepared as a threshold switch and used in the form of a thin film in a phase-change memory and other elements to improve the performance of such elements. There are few studies on the preparation of such targets, and the key technologies have been monopolized. In this study, the powder difference was taken as the basis to study the target material preparation process of this material in order to prepare a target with high density and uniform composition. Two kinds of TeAsGeSi alloy powders were prepared by vacuum melting under different cooling conditions: quenching and slow cooling. The X-ray diffraction (XRD) analysis shows that the powder prepared by rapid cooling is amorphous, while the powder prepared by slow cooling process is crystalline, and the main crystal phase is As 2GeTe4. The differential scanning calorimetry and thermogravimetry (DSC-TG) curves of the two powders shows that the powders begin to lose weight quickly at 400 ℃, and the slowly cooled powder melts at 350 ℃. As a result, the sintering temperature must not exceed 340 ℃. The TeAsGeSi alloy target was prepared by vacuum hot pressing. The two powders were incubated at 340 ℃ for 2 h and 20 MPa to prepare two targets. The target material prepared by the slowly cooled powder has a high density of 5. 46 g·cm-3, reaching 99. 5% of the theoretical density. The morphological characterization shows that the target has a smooth surface with few holes and uniform distribution of elements, and this target can produce high-performance thin films.
-
Key words:
- chalcogenide amorphous /
- powder /
- target /
- TeAsGeSi /
- densification
-
表 1 原料粉體及靶材ICP-MS分析結果
Table 1. Results of ICP-MS analysis of raw powder and target
元素 原子數分數/% 目標含量 方案一粉體 方案一靶材 方案二粉體 方案二靶材 Te 33 33.15 34.76 33.04 33.97 As 40.5 40.25 37.43 40.45 38.68 Ge 8 7.93 8.17 7.96 8.09 Si 18.5 18.67 19.63 18.55 19.26 259luxu-164 -
參考文獻
[1] Lin H Y. Progress of amorphous semiconductors. Mater Rev, 1993(2): 30 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB199302007.htm林鴻溢. 非晶態半導體的進展. 材料導報, 1993(2): 30 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB199302007.htm [2] Yin Q X, Chen L. Research progress and application prospect of phase change memory materials. Adv Mater Ind, 2016(7): 56 doi: 10.3969/j.issn.1008-892X.2016.07.013尹琦璕, 陳冷. 相變存儲器材料的研究進展和應用前景. 新材料產業, 2016(7): 56 doi: 10.3969/j.issn.1008-892X.2016.07.013 [3] Rao F, Ding K Y, Zhou Y X, et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science, 2017, 258(6369): 1423 http://www.ncbi.nlm.nih.gov/pubmed/29123020 [4] Shin S Y, Choi J M, Seo J, et al. The effect of doping Sb on the electronic structure and the device characteristics of Ovonic threshold switches based on Ge-Se. Sci Rep, 2014, 4(6): 7099 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235286/ [5] Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21(20): 1450 doi: 10.1103/PhysRevLett.21.1450 [6] Song E L, Lan L F, Lin Z G, et al. Preparation of indium-zinc-oxide thin film transistors by hot-pressing sintering target. Acta Phys Chim Sin, 2017, 33(10): 2092 doi: 10.3866/PKU.WHXB201705114宋二龍, 蘭林鋒, 林振國, 等. 熱壓燒結靶材制備氧化銦鋅薄膜晶體管. 物理化學學報, 2017, 33(10): 2092 doi: 10.3866/PKU.WHXB201705114 [7] Tu H, Wei D S, Zhou S J, et al. Effect of cooling rate on the microstructure and corrosion properties of Zn-5Al-0.1RE-xSi alloys. Chin J Eng, 2016, 38(8): 1132 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201608012.htm涂浩, 魏大圣, 周圣潔, 等. 冷卻速度對Zn-5Al-0.1RE-xSi合金顯微組織及耐蝕性能的影響. 工程科學學報, 2016, 38(8): 1132 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201608012.htm [8] Chen S, Geng Y H, Wang C J, et al. Research progress of CoCrPt system targets fabrication. Precious Met, 2013, 34(1): 74 doi: 10.3969/j.issn.1004-0676.2013.01.017陳松, 耿永紅, 王傳軍, 等. 磁控濺射用CoCrPt系靶材制備技術研究進展. 貴金屬, 2013, 34(1): 74 doi: 10.3969/j.issn.1004-0676.2013.01.017 [9] Xia Y, Xie Y F, Lü H, et al. A Phase Change Memory Sb-Te-W with a Phase Change of the Target and its Preparation Method: China Patent, 103898452B. 2017-03-15夏揚, 謝元鋒, 呂宏, 等. 一種相變存儲用Sb-Te-W相變靶材及其制備方法: 中國專利, 103898452B. 2017-03-15 [10] Fu S R. Curve analysis of DSC. Guangzhou Chem, 1991(3): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-GZHX199103009.htm傅樹人. DSC曲線解析. 廣州化學, 1991(3): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-GZHX199103009.htm [11] Margrave J L. The Characterization of High-Temperature Vapors. New York: Wiley, 1967 [12] Shu H W, Jaulmes S, Ollitrault-Fichet R, et al. Système AsGeTe: Ⅰ. diagramme de phase du système As2Te3GeTe. Phases stables et métastables. J Solid State Chem, 1987, 69(1): 48 doi: 10.1016/0022-4596(87)90009-0 [13] Lin Y, Wang B, Chu M Y, et al. Study on preparation and sputtering properties of phase-change materials target. Hot Working Technol, 2011, 40(18): 112 doi: 10.3969/j.issn.1001-3814.2011.18.034林陽, 王博, 儲茂友, 等. 相變存儲靶材的制備和鍍膜性能研究. 熱加工工藝, 2011, 40(18): 112 doi: 10.3969/j.issn.1001-3814.2011.18.034 [14] Tan X, Hu B Z, Zheng W X, et al. The study and formation of the holes of niobium oxide target material by hot pressing. World Nonferrous Met, 2017(16): 255 https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201716148.htm譚鑫, 扈百直, 征衛星, 等. 熱壓氧化鈮靶材內部孔洞的形成及研究. 世界有色金屬, 2017(16): 255 https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201716148.htm [15] Zhang P F. Hot Pressing Behavior and High-Temperature Properties of Mechanically Alloyed 2Si-B-3C-N Ceramic[Dissertation]. Harbin: Harbin Institute of Technology, 2013張鵬飛. 機械合金化2Si-B-3C-N陶瓷的熱壓燒結行為與高溫性能研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2013 [16] Liang S Y, Kang J, Zhao X, et al. Phase composition and microstructure of hot-pressing sintered Ti2AlN metal-ceramic bulk material. J Aeronautical Mater, 2017, 37(3): 73 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201703013.htm梁蘇瑩, 康舉, 趙霞, 等. 熱壓燒結Ti2AlN金屬陶瓷材料的物相及顯微結構. 航空材料學報, 2017, 37(3): 73 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201703013.htm [17] Semiconductor Glass Group, Shanghai Institute of Ceramics, Chinese Academy of Sciences. Sulfur glass semiconductor storage material. J Inorg Mater, 1973(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL197303001.htm中國科學院上海硅酸鹽研究所半導體玻璃組. 硫系玻璃半導體存儲材料. 無機材料學報, 1973(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL197303001.htm -