Mineralogical phase and formation mechanism of titanium-bearing protective layers in a blast furnace hearth
-
摘要: 基于高爐破損調查取樣分析, 借助X射線熒光分析、X射線衍射分析、電子探針分析、掃描電子顯微鏡結合能譜分析等手段分析了高爐爐缸、爐底不同部位形成的含鈦保護層化學成分、物相組成和微觀形貌, 并建立正規溶液熱力學模型對Ti (C, N)形成的熱力學條件進行分析, 然后針對高爐的實際工況, 明晰高爐爐缸TiC0.3N0.7形成的條件.結果表明, 高爐爐缸側壁最薄處炭磚殘余厚度僅為200 mm; 爐缸爐底炭磚表面普遍存在含鈦保護層, 保護層平均厚度在300~600 mm左右, 高爐爐缸不同部位形成的保護層中Ti(C, N)主要以TiC0.3N0.7形式存在, 并與Fe相聚集在一起.Ti (C, N)固溶體實際混合摩爾生成吉布斯自由能顯著低于標準混合摩爾生成吉布斯自由能和理想混合摩爾生成吉布斯自由能.在不同溫度條件下, TiC和TiN在固溶體中存在的比例不同, 高溫時以析出TiC為主, 低溫時以析出TiN為主.Ti (C, N)固溶體的形成與高爐熱力學狀態條件直接相關, TiC0.3N0.7在該高爐爐缸中的形成溫度為1423℃.Abstract: In theory and practice, TiO2-bearing iron ores are the preferred raw materials for prolonging blast furnace times due to their protection of the refractory lining of the hearth. Currently, however, a lack of detailed understanding of the mineralogical composition, formation mechanism, and ratio of C to N in the Ti(C, N) solid solution leaves the blast furnace operator unable to employ a scientific and effective measure to deal with abnormal hearth erosion. As a result, frequent hearth breakouts might occur, causing great financial loss to steel companies. In the present work, in an attempt to clarify the essence of longevity blast furnaces, investigations were conducted into blast furnace hearth damage together with dissection analyses, to derive the mineralogical composition and microstructure of titanium-bearing protective layers. The results show that the exact chemical composition of the TiCxN1-x which formed in the blast furnace is TiC0.3N0.7. Based on thermodynamic analysis, the standard Gibbs free energy of the formation of Ti(C, N) decreases at first, then increases with increasing TiC content. At different temperatures, the proportion of TiC and TiN in the solid solution is different, i.e., more TiC at higher temperatures but more TiN at lower temperatures. At 1423℃, the TiC0.3N0.7 is formed in the hot-side of the investigated blast furnace hearth, and the thickness of the titanium-bearing protective layer varies with smelting intensity, temperature, and circulation strength of hot metal. This paper classifies the protective layer into various types based on formation mechanism. Finally, a comprehensive regulatory scheme is presented to act as a basis for extending the lifespan of the blast furnace hearth.
-
Key words:
- blast furnace /
- hearth /
- titanium-bearing protective layer /
- phase composition /
- TiC0.3N0.7 /
- precipitation temperature
-
表 1 保護層試樣X射線熒光分析法成分分析(質量分數)
Table 1. XRF analysis of the protective layer samples ?
% 試樣 TiO2 Fe2O3 CaO SiO2 Al2O3 MgO C Na2O K2O 1號試樣 31.72 14.04 15.94 14.39 10.19 6.03 2.08 0.5 0.84 2號試樣 45.07 19.17 0.61 3.05 14.27 0.04 12.89 0.32 0.34 3號試樣 54.21 17.66 0.38 8.49 2.28 0.11 15.15 0.34 0.64 高爐渣 10.01 31.99 27.21 14.36 10.39 表 2 高爐爐缸爐底保護層試樣的電子探針分析結果
Table 2. EPMA analysis of the protective layer samples in blast furnace hearth bottom
元素 質量分數/% 原子數分數/% 摩爾比(Ti∶C∶N) Ti 65.858 49.648 C 5.198 14.869 1.000∶0.300∶0.715 N 16.872 35.483 總計 87.928 100.000 259luxu-164 -
參考文獻
[1] Jiao K X, Zhang J L, Liu Z J, et al. Analysis of blast furnace hearth sidewall erosion and protective layer formation. ISIJ Int, 2016, 56(11): 1956 doi: 10.2355/isijinternational.ISIJINT-2016-168 [2] Liu Z J, Zhang J L, Yang T J. Low carbon operation of super-large blast furnaces in China. ISIJ Int, 2015, 55(6): 1146 doi: 10.2355/isijinternational.55.1146 [3] Jiao K X, Zhang J L, Liu Z J, et al. Properties and application of carbon composite brick for blast furnace hearth. J Min Metall Sect B-Metall, 2015, 51(2): 143 doi: 10.2298/JMMB141107018J [4] Jiao K X, Zhang J L, Liu Z J, et al. Dissection investigation of Ti(C, N) behavior in blast furnace hearth during vanadium titano-magnetite smelting. ISIJ Int, 2017, 57(1): 48 doi: 10.2355/isijinternational.ISIJINT-2016-419 [5] Inada T, Kasai A, Nakano K, et al. Dissection investigation of blast furnace hearth-Kokura No. 2 blast furnace (2nd campaign). ISIJ Int, 2009, 49(4): 470 doi: 10.2355/isijinternational.49.470 [6] Shinotake A, Nakamura H, Yadoumaru N, et al. Investigation of blast furnace hearth sidewall erosion by core sample analysis and consideration of campaign operation. ISIJ Int, 2003, 43(3): 321 doi: 10.2355/isijinternational.43.321 [7] Takatani K, Inada T, Takata K. Mathematical model for transient erosion process of blast furnace hearth. ISIJ Int, 2001, 41(10): 1139 doi: 10.2355/isijinternational.41.1139 [8] Jiao K X, Zhang J L, Liu Z J, et al. Analysis of the phase of the solid iron layer in blast furnace hearth. Chin J Eng, 2017, 39(6): 838 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201706004.htm焦克新, 張建良, 劉征建, 等. 高爐爐缸凝鐵層物相分析. 工程科學學報, 2017, 39(6): 838 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201706004.htm [9] Zhang J L, Jiao K X, Liu Z J, et al. Comprehensive regulation technology for hearth protective layer of blast furnace longevity. Iron Steel, 2017, 52(12): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201712001.htm張建良, 焦克新, 劉征建, 等. 長壽高爐爐缸保護層綜合調控技術. 鋼鐵, 2017, 52(12): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201712001.htm [10] Li Y, Li Y Q, Fruehan R J. Formation of titanium carbonitride from hot metal. ISIJ Int, 2001, 41(12): 1417 doi: 10.2355/isijinternational.41.1417 [11] Li Y, Fruehan R J. Thermodynamics of TiCN and TiC in Fe-C sat melts. Metall Mater Trans B, 2001, 32(6): 1203 doi: 10.1007/s11663-001-0108-5 [12] Bai C G, Pei H N, Zhao S J, et al. An investigation of the relationship between the particle size of titanium carbonitride and the viscosity of blast furnace slag bearing high titania. Iron Steel Van Tit, 1995, 16(3): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT503.001.htm白晨光, 裴鶴年, 趙詩金, 等. 碳氮化鈦粒度與熔渣粘度關系的研究. 鋼鐵釩鈦, 1995, 16(3): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT503.001.htm [13] Zhen Y L, Zhang G H, Chou K C. Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles. Metall Mater Trans B, 2015, 46(1): 155 doi: 10.1007/s11663-014-0169-x [14] Zhen Y L, Zhang G H, Chou K C, et al. Influence of TiN on viscosity of CaO-MgO-Al2O3-SiO2-(TiN) suspension system. Can Metall Q, 2015, 54(3): 340 doi: 10.1179/1879139515Y.0000000004 [15] Liu Y X, Zhang J L, Zhang G H, et al. Influence of Ti(C0.3N0.7) on viscosity of blast furnace slags. Ironmak Steelmak, 2017, 44(8): 609 doi: 10.1080/03019233.2016.1223907 [16] Wang X Q. Blast Furnace Smelting Vanadium Titanium Magnetite. 1st. Beijing: Metallurgical Industry Press, 1994王喜慶. 釩鈦磁鐵礦高爐冶煉. 1版. 北京: 冶金工業出版社, 1994 [17] Song J C. Titanium Material Protection Technology. Beijing: Metallurgical Industry Press, 1994宋建成. 高爐含鈦物料護爐技術. 北京: 冶金工業出版社, 1994 [18] Wada H, Pehlke R D. Nitrogen solubility and nitride formation in austenitic Fe-Ti alloys. Metall Trans B, 1985, 16(4): 815 doi: 10.1007/BF02667518 [19] Ozturk B, Fruehan R J. Thermodynamics of inclusion formation in Fe-Ti-C-N alloys. Metall Trans B, 1990, 21(5): 879 doi: 10.1007/BF02657814 [20] Sumito M, Tsuchiya N, Okabe K, et al. Solubility of titanium and carbon in molten Fe-Ti alloys saturated with carbon. Trans Iron Steel Inst Jpn, 1981, 21(6): 414 doi: 10.2355/isijinternational1966.21.414 [21] Jonsson S. Assessment of the Fe-Ti-C system calculation of the Fe-Ti-C system and prediction of the solubility limit of Ti(C, N) in liquid Fe. Metall Mater Trans B, 1998, 29(2): 371 doi: 10.1007/s11663-998-0114-y [22] Morizane Y, Ozturk B, Fruehan R J. Thermodynamics of TiOx in blast furnace type slags. Metall Mater Trans B, 1999, 30(1): 29 doi: 10.1007/s11663-999-0004-y [23] Jung I J, Kang S, Jhi S H, et al. A study of the formation of Ti(CN) solid solutions. Acta Mater, 1999, 47(11): 3241 doi: 10.1016/S1359-6454(99)00199-8 [24] Jung I J, Kang S. A study of the characteristics of Ti(CN) solid solutions. J Mater Sci, 2000, 35(1): 87 doi: 10.1023/A:1004740516214 [25] Zhang J Y. Physical Chemistry of Metallurgy. Beijing: Metallurgical Industry Press, 2004張家蕓. 冶金物理化學. 北京: 冶金工業出版社, 2004 [26] Guo H J. Physical Chemistry of Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2006郭漢杰. 冶金物理化學教程. 2版. 北京: 冶金工業出版社, 2006 [27] Kang S. Stability of nitrogen in titanium carbonitride solid solutions. Met Powder Rep, 1998, 53(5): 37 http://www.sciencedirect.com/science/article/pii/S0026065798850297 [28] Du H G. Blast Furnace Smelting Principle of Vanadium Titanium Magnetite. Beijing: Science Press, 1996杜鶴桂. 高爐冶煉釩鈦磁鐵礦原理. 北京: 科學出版社, 1996 [29] Jiao K X, Zhang J L, Zuo H B, et al. Composition and formation mechanism of viscous layers in blast furnace hearth. J Northeast Univ Nat Sci, 2014, 35(7): 987 doi: 10.3969/j.issn.1005-3026.2014.07.017焦克新, 張建良, 左海濱, 等. 高爐爐缸黏滯層物相及形成機理. 東北大學學報(自然科學版), 2014, 35(7): 987 doi: 10.3969/j.issn.1005-3026.2014.07.017 [30] Jiao K X, Zhang J L, Hou Q F, et al. Analysis of the relationship between productivity and hearth wall temperature of a commercial blast furnace and model prediction. Steel Res Int, 2017, 88(9): 1600475-1 doi: 10.1002/srin.201600475 -