Distribution patterns and formation mechanisms of the mineralogical structure of high basicity sinter
-
摘要: 基于燒結礦的非均性, 發現了礦相結構的三種分布模式, 并對礦相結構的形成機理進行了闡述.首先, 基于燒結礦的手標本鑒定特征把某鋼廠燒結礦劃分成了三類.其次, 對礦相結構的鑒定發現, 第1類、第2類、第3類這三類燒結礦的礦相結構在空間上依次具有"均一狀、同心環狀、互嵌狀"三種分布模式.均一狀分布的礦相結構形成于溫度較高、還原性較強和混料均勻的穩定條件之中, 主要為交織熔蝕-熔蝕結構, 具有良好的冶金性能; 同心環狀分布的礦相結構從外部帶到內部帶依次為交織熔蝕結構、熔蝕結構和赤鐵礦粒狀結構, 多以獨立單元的形式出現, 其所在區域工藝條件的惡化并不會對燒結礦總體的結構和冶金性能造成太大影響; 交織熔蝕結構、赤鐵礦粒狀結構和鐵酸鈣聚集區交叉形成的互嵌狀礦相結構, 多形成于溫度較低、氣流不穩定和混料不均勻的條件之中, 易成片出現而導致燒結礦結構和冶金性能的惡化.最后, 冶金性能分析顯示, 第1、2類燒結礦各項冶金性能指標良好, 具有互嵌狀分布模式的第3類燒結礦由于礦相結構的不均勻, 冶金性能相對較差.結果表明, 這種基于礦相結構分布模式的研究方式, 有利于對礦相結構形成機理的闡述, 更助于對燒結原料、燒結氣氛等工藝條件的調控, 對燒結礦冶金性能的改善具有一定理論價值.Abstract: Based on their inhomogeneity, three distribution pattern categories of the mineralogical structure of sinters, and their formation mechanisms, were detailed. First, based on the identifiable characteristics of hand specimens, the sinters in a steel plant were divided into three categories (Category 1, Category 2, Category 3). Second, according to the identification characteristics of the microstructure of sinters, three distribution patterns of the mineralogical structure for the three categories of sinters were established, those being uniform, concentric annular, and intercalated. The homogeneous mineral phase structures, which have good metallurgical properties, are mostly interlaced erosion and erosion structure, and the mineral phase structures are formed under stable conditions with higher temperature, stronger reduction, and uniform mixture. The concentric annular mineralogical structures from the outside to the inner belt are interlaced erosion structure, erosion structure, and hematite granular structure, separately. These structures formed under deteriorative process conditions and have no obvious adverse effect on the overall structure and metallurgical properties of sinters. The intercalated mineral phase structure, formed by the interlaced erosion structure, hematite granular structure, and calcium ferrate accumulation area, is mostly formed under conditions of lower temperature, unstable air flow, and inhomogeneous mixture. Getting together may lead to the deterioration of the structure and metallurgical properties of the sinter. Finally, the results of a metallurgical performance analysis show that the metallurgical index of Category 1 and Category 2 are satisfactory, and Category 3, with its intercalated distribution pattern, shows relatively poor metallurgical performance due to the inhomogeneous structure. The above results indicate that the research method based on the distribution pattern of mineral phase structure can be conducive to the discovery of the formation mechanism of the mineralogical structure, and can help to control the sintering raw materials and sintering atmosphere. It has certain theoretical value for improving the metallurgical properties of sinter.
-
圖 5 同心環狀燒結礦顯微結構. (a) 粒狀結構(內部帶); (b) ①號區域(內部帶); (c) ②號區域(內部帶); (d, e) 熔蝕結構(過渡帶); (f, g) 交織熔蝕結構(外部帶); (h) 氧化赤鐵礦(外部帶邊緣)
Figure 5. Microstructure of concentric annular sinter: (a) granular structure (inner belt); (b) area ① (inner belt); (c) area ② (inner belt); (d, e) erosion structure (transition belt); (f, g) interlaced erosion structure (outside belt); (h) oxidized hematite (the edge of outside belt)
表 1 燒結礦化學成分
Table 1. Chemical composition of sinters
類型 質量分數/% 堿度,R TFe FeO SiO2 CaO Al2O3 MgO 第1類 56.01 10.45 5.11 10.02 0.93 2.10 2.10 第2類 56.70 8.50 4.87 10.10 1.12 1.91 2.07 第3類 56.85 8.91 5.43 9.83 1.83 2.12 1.81 表 2 燒結礦礦相結構分布模式
Table 2. Distribution patterns of the mineralogical structure of sinters
類型 分布模式(體積分數) 礦相結構 第1類 均一狀(>95%) 交織熔蝕-熔蝕結構 其他結構(<5%) 氣孔邊緣及樣品邊緣氧化赤鐵礦 第2類 均一狀(<85%) 交織熔蝕-熔蝕結構 同心環狀(<5%) 從外到內:交織熔蝕結構,熔蝕結構,赤鐵礦粒狀結構 其他結構(>10%) 骸晶赤鐵礦、粒狀磁鐵礦、斑狀結構 第3類 均一狀(>50%) 交織熔蝕-熔蝕結構 互嵌狀(<30%) 交織熔蝕結構與赤鐵礦粒狀結構互嵌,赤鐵礦粒狀結構內嵌有部分鐵酸鈣聚集區 其他結構(>20%) 骸晶赤鐵礦、粒狀磁鐵礦、斑狀結構 表 3 各分帶的顯微結構、礦物及氣孔所占體積分數
Table 3. Microstructure, mineral and pore content of each belt
分帶顯微結構 各分帶體積分數/% 各分帶結構中礦物體積分數/% 氣孔率/% 磁鐵礦 赤鐵礦 鐵酸鈣 硅酸二鈣 殘余CaO 玻璃質 粒狀結構(內部帶) 8~10 少量 80~85 少量 10~15 5~7 60~65 熔蝕結構(過渡帶) 20~30 45~50 8~10 30~35 5~8 2~3 1~2 40~45 交織熔蝕結構(外部帶) 60~70 30~40 3~5 50~60 3~5 少量 1~2 25~30 表 4 互嵌狀燒結礦礦物組成及氣孔率
Table 4. Mineral composition and porosity of intercalated sinter
顯微結構 各區域體積占比/% 各分帶結構中礦物體積分數/% 氣孔率/% 磁鐵礦 赤鐵礦 鐵酸鈣 硅酸二鈣 殘余CaO 玻璃質 交織熔蝕結構(A區域) 70~80 40~45 微量 45~50 5~10 微量 2~3 20~30 粒狀結構(B區域) 15~20 少量 85~90 5~10 少量 2~3 1~2 30~35 鐵酸鈣聚集區(B區域) 5~10 90~95 5~10 表 5 燒結礦冶金性能指標
Table 5. Metallurgical properties of sinters
類型 分布模式 低溫粉化指數(RDI+3.15 mm)/% 轉鼓指數/% 還原指數/% 堿度,R 第1類 均一狀分布+其他結構 85.3 79.97 64.20 2.10 第2類 均一狀分布+同心環狀分布+其他結構 79.7 78.30 69.95 2.07 第3類 均一狀分布+互嵌狀分布+其他結構 54.8 79.01 84.60 1.81 259luxu-164 -
參考文獻
[1] Wang H F, Pei Y D, Zhang C X, et al. Green development of sintering/pellet procedure in China iron and steel industry. Iron Steel, 2016, 51(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201601001.htm王海風, 裴元東, 張春霞, 等. 中國鋼鐵工業燒結/球團工序綠色發展工程科技戰略及對策. 鋼鐵, 2016, 51(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201601001.htm [2] Zhang J L, Liu D H, Wang X L, et al. Research status development trend of chemical composition control of sinter. Sintering Pelletizing, 2017, 42(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SJQT201704001.htm張建良, 劉東輝, 王筱留, 等. 燒結礦化學成分控制現狀及發展方向. 燒結球團, 2017, 42(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SJQT201704001.htm [3] Ren Y F. Lithofacies and Metallography of Iron and Steel. Beijing: Metallurgical Industry Press, 1982任允芙. 鋼鐵冶金巖相礦相學. 北京: 冶金工業出版社, 1982 [4] Ren P S, Yan L J. Influence of mineral composition and microstructure on sinter quality. Baosteel Technol, 1997(2): 39 https://www.cnki.com.cn/Article/CJFDTOTAL-BGJS702.009.htm任佩珊, 閆麗娟. 礦物組成及顯微結構對燒結礦質量的影響. 寶鋼技術, 1997(2): 39 https://www.cnki.com.cn/Article/CJFDTOTAL-BGJS702.009.htm [5] Wang W, Deng M, Xu R S, et al. Three dimensional structure and micro-mechanical properties of iron ore sinter. J Iron Steel Res Int, 2017, 24(10): 998 doi: 10.1016/S1006-706X(17)30146-2 [6] Wang W, Xu W B, Zhu H Y, et al. Analysis of three-dimensional mineral phase of high basicity sinter. J Iron Steel Res, 2016, 28(11): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201611002.htm王煒, 徐維波, 朱航宇, 等. 高堿度燒結礦的三維礦相特性分析. 鋼鐵研究學報, 2016, 28(11): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201611002.htm [7] Liu L N, Han X L, Liu L. Study on texture of sinter with different basicity. Iron Steel Vanadium Titanium, 2017, 38(2): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201702028.htm劉麗娜, 韓秀麗, 劉磊. 不同類型燒結礦隨堿度變化的礦相結構研究. 鋼鐵釩鈦, 2017, 38(2): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201702028.htm [8] Liu L N, Han X L, Li Z M, et al. Influence of carbon addition on mineralogical structures and metallurgical properties of sinter prepared with fine-grained hematite concentrates. Iron Steel Vanadium Titanium, 2014, 35(2): 78 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201402021.htm劉麗娜, 韓秀麗, 李志民, 等. 配碳量對細粒赤鐵精粉燒結礦礦相結構及冶金性能的影響. 鋼鐵釩鈦, 2014, 35(2): 78 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201402021.htm [9] Xiao Z X, Hu Z G, Yu S S, et al. Effect of pore structure of sinter ore on sintering strength. Res Iron Steel, 2017, 45(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GTYJ201704001.htm肖志新, 胡正剛, 余珊珊, 等. 燒結礦孔洞結構對燒結強度的影響. 鋼鐵研究, 2017, 45(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-GTYJ201704001.htm [10] Pimenta H P, Seshadri V. Characterisation of structure of iron ore sinter and its behavior during reduction at low temperatures. Ironmaking Steelmaking, 2002, 29(3): 169 doi: 10.1179/030192302225002009 [11] Jursova S, Pustejovska P, Brozova S. Study on reducibility and porosity of metallurgical sinter. Alexandria Eng J, 2018, 57(3): 1657 doi: 10.1016/j.aej.2017.03.007 [12] Qiao R Q, Du H G. Forming mechanism of pore in sinter with low fluorine and its effect on the sinter strength. J Iron Steel Res, 1999, 11(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON199906000.htm喬瑞慶, 杜鶴桂. 低氟燒結礦微氣孔的形成機理及對燒結礦強度的影響. 鋼鐵研究學報, 1999, 11(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON199906000.htm [13] E Ф вигман, Б Н Лёпин, Ю С Юсфин, et al. Siderology. Translated by Dong X J, Yang N F. Beijing: Metallurgical Industry Press, 1993E Ф維格曼, Б Н熱廖賓, Ю С尤斯芬, 等. 煉鐵學. 董學經, 楊乃伏, 譯. 北京: 冶金工業出版社, 1993 [14] Long F. The Effection on Ironmaking Raw Materials and Metallurgical Process by High Content of Al2O3 Iron Ore [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2006龍防. 富Al2O3礦對煉鐵原料及冶煉過程的影響[學位論文]. 武漢: 武漢科技大學, 2006 [15] Li G S. Study on Effect Mechanism of Binding Phase to Sinter's Strength and Binding Phase's Proper Composition [Dissertation]. Shenyang: Northeastern University, 2008李光森. 黏結相對燒結礦強度的影響機理及其合理組分的探討[學位論文]. 沈陽: 東北大學, 2008 [16] Den M, Wang W, Xu R S, et al. Comparative research on micro-mechanical properties of vanadium-titanium sinter and ordinary sinter. Iron Steel Vanadium Titanium, 2017, 38(2): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201702026.htm鄧明, 王煒, 徐潤生, 等. 釩鈦燒結礦和普通燒結礦顯微力學性能對比. 鋼鐵釩鈦, 2017, 38(2): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201702026.htm [17] Zhang C. Influence of Mineral Composition and Microstructure on the Sinter Quality of Nanjing Steel [Dissertation]. Anshan: University of Science and Technology Liaoning, 2016張策. 礦物組成及微觀結構對南鋼燒結礦質量影響的研究[學位論文]. 鞍山: 遼寧科技大學, 2016 -