<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

DP590/DP780高強鋼管液壓成形的性能

崔振楠 林利 朱國明 康永林 劉仁東 田鵬

崔振楠, 林利, 朱國明, 康永林, 劉仁東, 田鵬. DP590/DP780高強鋼管液壓成形的性能[J]. 工程科學學報, 2020, 42(2): 233-241. doi: 10.13374/j.issn2095-9389.2019.01.15.004
引用本文: 崔振楠, 林利, 朱國明, 康永林, 劉仁東, 田鵬. DP590/DP780高強鋼管液壓成形的性能[J]. 工程科學學報, 2020, 42(2): 233-241. doi: 10.13374/j.issn2095-9389.2019.01.15.004
CUI Zhen-nan, LIN Li, ZHU Guo-ming, KANG Yong-lin, LIU Ren-dong, TIAN Peng. Hydroforming performance of DP590/DP780 high-strength steel tube[J]. Chinese Journal of Engineering, 2020, 42(2): 233-241. doi: 10.13374/j.issn2095-9389.2019.01.15.004
Citation: CUI Zhen-nan, LIN Li, ZHU Guo-ming, KANG Yong-lin, LIU Ren-dong, TIAN Peng. Hydroforming performance of DP590/DP780 high-strength steel tube[J]. Chinese Journal of Engineering, 2020, 42(2): 233-241. doi: 10.13374/j.issn2095-9389.2019.01.15.004

DP590/DP780高強鋼管液壓成形的性能

doi: 10.13374/j.issn2095-9389.2019.01.15.004
基金項目: 國家自然科學基金資助項目(U1460101)
詳細信息
    通訊作者:

    E-mail:zhuguoming@ustb.edu.cn

  • 中圖分類號: TG394

Hydroforming performance of DP590/DP780 high-strength steel tube

More Information
  • 摘要: 為對生產進行指導,研究了DP590/DP780高強鋼焊管在液壓成形過程中的變形行為;使用場發射掃描電鏡觀察管材周向的橫截面以確定基體的組織,通過VMHT30M顯微硬度計確定管材的焊縫及熱影響區的大小,以便研究液壓成形破裂行為;采用液壓成形試驗機對兩種管件進行液壓成形研究。實驗結果表明:管材在脹形過程中的破裂壓力比理論計算公式得到的破裂壓力大,破裂位置全部位于靠近焊縫及熱影響區的母材區域;隨著管徑的增大和長徑比的增大,管材的極限膨脹率呈現下降趨勢;在自由脹形過程中,管材的焊縫區域基本上不發生減薄,最小壁厚位于管材的熱影響區和基體的過渡區域,并且壁厚的減薄率在脹形最高點所在截面最大,越靠近管材夾持區,壁厚的減薄率越小。最終得到以下結論:管材液壓成形實驗是準確獲得管材力學性能參數的途徑;提高焊接質量有助于控制失效破裂位置;合理選擇管材的長徑比有利于管材性能的充分發揮;通過合理控制各處的減薄有利于降低液壓成形件的破裂風險。

     

  • 圖  1  液壓成形實驗機結構

    Figure  1.  Hydroforming test machine structure

    圖  2  直徑89 mm圓管截面掃描電子顯微鏡照片. (a) DP590;(b) DP780

    Figure  2.  SEM photograph of the cross section of a 89 mm diameter tube: (a) DP590; (b) DP780

    圖  3  DP590/DP780板材真應力?應變曲線

    Figure  3.  True stress?strain curves of DP590/DP780 sheet

    圖  4  硬度測量試樣

    Figure  4.  Hardness measurement sample

    圖  5  管材周向維氏硬度. (a) DP590-?89 mm管;(b) DP780-?89 mm管;(c) DP590-?63.5 mm管

    Figure  5.  Circumferential Vickers hardness of the tube: (a) DP590-?89 mm tube; (b) DP780-?89 mm tube; (c) DP590-?63.5 mm tube

    圖  6  試驗管的擬合真應力–應變曲線對比

    Figure  6.  Comparison of fitting true stress?strain curves of the studied tubes

    圖  7  DP590管脹形破裂位置. (a) ?63.5 mm;(b) ?89 mm

    Figure  7.  Bulging rupture position of DP590 tubes: (a) ?63.5 mm; (b) ?89 mm

    圖  8  不同長徑比管材破裂壓力

    Figure  8.  Burst pressure of tubes with different length-to-diameter ratios

    圖  9  管材極限膨脹率對比. (a) DP590管;(b) ?89 m管

    Figure  9.  Comparison of the ultimate expansion ratio of the tubes: (a) DP590 tubes; (b) ?89 mm tubes

    圖  10  厚度分布截面截取位置

    Figure  10.  Intercept position of the thickness distribution section

    圖  11  DP590管不同截面壁厚分布圖

    Figure  11.  Wall thickness profile of different sections of DP590 tube

    表  1  實驗管材規格

    Table  1.   Experimental tube specifications

    材料管徑/mm壁厚/mm
    DP59063.5、892
    DP780892
    下載: 導出CSV

    表  2  兩種材料的力學性能參數

    Table  2.   Mechanical properties of two materials

    材料密度/(kg·m?3屈服強度/MPa抗拉強度/MPa斷后伸長率/%彈性模量/GPa泊松比r00r45r90n
    DP5907850379.7626.424.2208.00.330.840.851.060.19
    DP7807850548.0836.716.5214.50.300.700.750.810.15
    下載: 導出CSV

    表  3  DP590/DP780高強鋼材料性能參數

    Table  3.   Material properties of DP590/DP780 high-strength steel

    材料密度/(kg·m?3屈服強度/MPa抗拉強度/MPa彈性模量/GPa泊松比rnK
    DP590-63.57850363.9623.12080.330.720.185471012.94
    DP590-897850410.4638.92080.330.720.1421929.68
    DP780-897850557.1840.8214.50.30.530.122361184.97
    下載: 導出CSV

    表  4  實驗管規格

    Table  4.   Experimental tube specifications

    材料直徑/mm管材壁厚/mm長徑比
    DP59063.521.2、1.4、1.6、1.8、2.0
    DP5908921.2、1.4、1.6、1.8、2.0
    DP7808921.2、1.4、1.6、1.8
    下載: 導出CSV

    表  5  管材開裂壓力

    Table  5.   Tube cracking pressure

    材料開裂壓力/MPa
    實驗均值理論計算值
    DP590-63.546.239.3
    DP590-8933.128.7
    DP780-8941.137.8
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Huang X F, Hu Y, Yi C K, et al. Hydroforming process of tubular variable cross section automotive torsion beam. J Netshape Form Eng, 2018, 10(2): 103 doi: 10.3969/j.issn.1674-6457.2018.02.018

    黃曉峰, 胡勇, 易成坷, 等. 管狀變截面汽車扭力梁內高壓成形工藝. 精密成形工程, 2018, 10(2):103 doi: 10.3969/j.issn.1674-6457.2018.02.018
    [2] Liu X J, Yang R, Feng Z C, et al. Research on hydroforming for automobile front sub-frame. J Harbin Univ Sci Technol, 2018, 23(2): 129

    劉曉晶, 楊然, 馮章超, 等. 汽車前副車架內高壓成形工藝研究. 哈爾濱理工大學學報, 2018, 23(2):129
    [3] Yuan S J, Wang X S. Developments in researches and applications of tube hydroforming. J Plast Eng, 2008, 15(2): 22

    苑世劍, 王小松. 內高壓成形技術研究與應用新進展. 塑性工程學報, 2008, 15(2):22
    [4] Sokolowski T, Gerke K, Ahmetoglu M, et al. Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes. J Mater Process Technol, 2000, 98(1): 34 doi: 10.1016/S0924-0136(99)00303-9
    [5] Strano M, Altan T. An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications. J Mater Process Technol, 2004, 146(1): 92 doi: 10.1016/j.jmatprotec.2003.07.016
    [6] Velasco R, Boudeau N. Tube bulging test: theoretical analysis and numerical validation. J Mater Process Technol, 2008, 205(1-3): 51 doi: 10.1016/j.jmatprotec.2007.11.106
    [7] Saboori M, Champliaud H, Gholipour J, et al. Evaluating the flow stress of aerospace alloys for tube hydroforming process by free expansion testing. Int J Adv Manuf Technol, 2014, 72(9-12): 1275 doi: 10.1007/s00170-014-5670-5
    [8] Cui X L, Wang X S, Yuan S J. Deformation analysis of double-sided tube hydroforming in square-section die. J Mater Process Technol, 2014, 214(7): 1341 doi: 10.1016/j.jmatprotec.2014.02.005
    [9] He Z B, Yuan S J, Lin Y L, et al. Analytical model for tube hydro-bulging test, part I: models for stress components and bulging zone profile. Int J Mech Sci, 2014, 87: 297 doi: 10.1016/j.ijmecsci.2014.05.009
    [10] He Z B, Yuan S J, Lin Y L, et al. Analytical model for tube hydro-bulging tests, part Ⅱ: linear model for pole thickness and its application. Int J Mech Sci, 2014, 87: 307 doi: 10.1016/j.ijmecsci.2014.05.010
    [11] Yang L F, Hu G L, Liu J W. Investigation of forming limit diagram for tube hydroforming considering effect of changing strain path. Int J Adv Manuf Technol, 2015, 79(5-8): 793 doi: 10.1007/s00170-015-6842-7
    [12] Cheng P Z, Lang L H, Ge Y L, et al. Tube free bulging experiment with force-end and material properties testing. J Beijing Univ Aeron Astron, 2015, 41(4): 686

    程鵬志, 郎利輝, 葛宇龍, 等. 力約束管材自由脹形試驗研究與材料性能測試. 北京航空航天大學學報, 2015, 41(4):686
    [13] Ge Y L, Li X X, Lang L H, et al. Optimized design of tube hydroforming loading path using multi-objective differential evolution. Int J Adv Manuf Technol, 2017, 88(1-4): 837 doi: 10.1007/s00170-016-8790-2
    [14] Hashemi R, Madoliat R, Afshar A. Prediction of forming limit diagrams using the modified M-K method in hydroforming of aluminum tubes. Int J Mater Form, 2016, 9(3): 297 doi: 10.1007/s12289-014-1207-6
    [15] Abdelkefi A, Guermazi N, Boudeau N, et al. Effect of the lubrication between the tube and the die on the corner filling when hydroforming of different cross-sectional shapes. Int J Adv Manuf Technol, 2016, 87(1-4): 1169 doi: 10.1007/s00170-016-8552-1
    [16] Li K, Yang L F, Wei J, et al. Design on a new type of tube impact hydroforming equipment. Forg Stamp Technol, 2017, 42(6): 77

    李坤, 楊連發, 魏軍, 等. 新型管材沖擊液壓成形裝置的設計. 鍛壓技術, 2017, 42(6):77
    [17] Lin Y L, He Z B, Chu G N, et al. A new method for directly testing the mechanical properties of anisotropic materials in bi-axial stress state by tube bulging test. Acta Metall Sin, 2017, 53(9): 1101 doi: 10.11900/0412.1961.2017.00074

    林艷麗, 何祝斌, 初冠南, 等. 利用管狀試樣測試各向異性材料雙向應力狀態力學性能的新方法. 金屬學報, 2017, 53(9):1101 doi: 10.11900/0412.1961.2017.00074
    [18] Xie W C, Yuan S J. Bulging behavior of thin-walled welded low carbon steel tubes. J Mater Eng, 2017, 45(1): 72 doi: 10.11868/j.issn.1001-4381.2015.000312

    謝文才, 苑世劍. 低碳鋼薄壁焊管液壓脹形行為. 材料工程, 2017, 45(1):72 doi: 10.11868/j.issn.1001-4381.2015.000312
    [19] Yuan S J. Modern Hydroforming Technology. Beijing: National Defense Industry Press, 2009

    苑世劍. 現代液壓成形技術. 北京: 國防工業出版社, 2009
  • 加載中
圖(11) / 表(5)
計量
  • 文章訪問數:  1639
  • HTML全文瀏覽量:  1545
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-01-15
  • 刊出日期:  2020-02-01

目錄

    /

    返回文章
    返回