-
摘要: 為對生產進行指導,研究了DP590/DP780高強鋼焊管在液壓成形過程中的變形行為;使用場發射掃描電鏡觀察管材周向的橫截面以確定基體的組織,通過VMHT30M顯微硬度計確定管材的焊縫及熱影響區的大小,以便研究液壓成形破裂行為;采用液壓成形試驗機對兩種管件進行液壓成形研究。實驗結果表明:管材在脹形過程中的破裂壓力比理論計算公式得到的破裂壓力大,破裂位置全部位于靠近焊縫及熱影響區的母材區域;隨著管徑的增大和長徑比的增大,管材的極限膨脹率呈現下降趨勢;在自由脹形過程中,管材的焊縫區域基本上不發生減薄,最小壁厚位于管材的熱影響區和基體的過渡區域,并且壁厚的減薄率在脹形最高點所在截面最大,越靠近管材夾持區,壁厚的減薄率越小。最終得到以下結論:管材液壓成形實驗是準確獲得管材力學性能參數的途徑;提高焊接質量有助于控制失效破裂位置;合理選擇管材的長徑比有利于管材性能的充分發揮;通過合理控制各處的減薄有利于降低液壓成形件的破裂風險。Abstract: In recent years, the automotive industry has become increasingly demanding for the strength of hollow structural parts. To meet the strength and toughness requirements, major automakers have begun to use high-strength steel for the production of automotive hollow structural parts, and the hydroforming process is the most economical way to achieve this purpose. However, studies on the hydroforming process of high-strength steel in the industry are few. To guide the production of high-strength steel hydroformed parts, the deformation behavior of DP590/DP780 high-strength steel welded tube during hydroforming was investigated in this study. The cross section of the circumferential direction of the tube was observed by scanning electron microscopy to determine the microstructure of the base metal. The sizes of the weld and the heat-affected zone of the tube were determined by VMHT30M microhardness tester to study the hydroforming fracture behavior. The deformation behavior of DP590/DP780 high-strength steel welded tube during hydroforming was studied by a tube hydroforming test machine. The experimental results are as follows: the fracture pressure of the tube during the bulging process is larger than the fracture pressure obtained by the theoretical calculation formula, and the rupture position is located in the base metal area near the weld and heat-affected zone. With the increase of the tube diameter and the length-to-diameter ratio, the maximum expansion ratio of the tube exhibits a downward trend. In the process of free bulging, the weld area of the tube is basically not thinned. The position of the minimum thickness is located in the heat-affected zone of the tube and the transition zone of the base body; the wall thickness reduction rate is the largest at the highest point of the bulging region, and the closer to the tube clamping zone, the smaller the wall thickness reduction rate. Finally, the following conclusions can be drawn: the hydroforming experiment of the tube can accurately obtain the mechanical properties of the tube. Improving the welding quality could help to control the failure rupture position. A reasonable selection of the length-to-diameter ratio of the tube is beneficial to the tube overall performance. It is beneficial to reduce the risk of cracking of the hydroformed part by reasonably controlling the thickness reduction rate of each part.
-
表 1 實驗管材規格
Table 1. Experimental tube specifications
材料 管徑/mm 壁厚/mm DP590 63.5、89 2 DP780 89 2 表 2 兩種材料的力學性能參數
Table 2. Mechanical properties of two materials
材料 密度/(kg·m?3) 屈服強度/MPa 抗拉強度/MPa 斷后伸長率/% 彈性模量/GPa 泊松比 r00 r45 r90 n值 DP590 7850 379.7 626.4 24.2 208.0 0.33 0.84 0.85 1.06 0.19 DP780 7850 548.0 836.7 16.5 214.5 0.30 0.70 0.75 0.81 0.15 表 3 DP590/DP780高強鋼材料性能參數
Table 3. Material properties of DP590/DP780 high-strength steel
材料 密度/(kg·m?3) 屈服強度/MPa 抗拉強度/MPa 彈性模量/GPa 泊松比 r值 n值 K值 DP590-63.5 7850 363.9 623.1 208 0.33 0.72 0.18547 1012.94 DP590-89 7850 410.4 638.9 208 0.33 0.72 0.1421 929.68 DP780-89 7850 557.1 840.8 214.5 0.3 0.53 0.12236 1184.97 表 4 實驗管規格
Table 4. Experimental tube specifications
材料 直徑/mm 管材壁厚/mm 長徑比 DP590 63.5 2 1.2、1.4、1.6、1.8、2.0 DP590 89 2 1.2、1.4、1.6、1.8、2.0 DP780 89 2 1.2、1.4、1.6、1.8 表 5 管材開裂壓力
Table 5. Tube cracking pressure
材料 開裂壓力/MPa 實驗均值 理論計算值 DP590-63.5 46.2 39.3 DP590-89 33.1 28.7 DP780-89 41.1 37.8 259luxu-164 -
參考文獻
[1] Huang X F, Hu Y, Yi C K, et al. Hydroforming process of tubular variable cross section automotive torsion beam. J Netshape Form Eng, 2018, 10(2): 103 doi: 10.3969/j.issn.1674-6457.2018.02.018黃曉峰, 胡勇, 易成坷, 等. 管狀變截面汽車扭力梁內高壓成形工藝. 精密成形工程, 2018, 10(2):103 doi: 10.3969/j.issn.1674-6457.2018.02.018 [2] Liu X J, Yang R, Feng Z C, et al. Research on hydroforming for automobile front sub-frame. J Harbin Univ Sci Technol, 2018, 23(2): 129劉曉晶, 楊然, 馮章超, 等. 汽車前副車架內高壓成形工藝研究. 哈爾濱理工大學學報, 2018, 23(2):129 [3] Yuan S J, Wang X S. Developments in researches and applications of tube hydroforming. J Plast Eng, 2008, 15(2): 22苑世劍, 王小松. 內高壓成形技術研究與應用新進展. 塑性工程學報, 2008, 15(2):22 [4] Sokolowski T, Gerke K, Ahmetoglu M, et al. Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes. J Mater Process Technol, 2000, 98(1): 34 doi: 10.1016/S0924-0136(99)00303-9 [5] Strano M, Altan T. An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications. J Mater Process Technol, 2004, 146(1): 92 doi: 10.1016/j.jmatprotec.2003.07.016 [6] Velasco R, Boudeau N. Tube bulging test: theoretical analysis and numerical validation. J Mater Process Technol, 2008, 205(1-3): 51 doi: 10.1016/j.jmatprotec.2007.11.106 [7] Saboori M, Champliaud H, Gholipour J, et al. Evaluating the flow stress of aerospace alloys for tube hydroforming process by free expansion testing. Int J Adv Manuf Technol, 2014, 72(9-12): 1275 doi: 10.1007/s00170-014-5670-5 [8] Cui X L, Wang X S, Yuan S J. Deformation analysis of double-sided tube hydroforming in square-section die. J Mater Process Technol, 2014, 214(7): 1341 doi: 10.1016/j.jmatprotec.2014.02.005 [9] He Z B, Yuan S J, Lin Y L, et al. Analytical model for tube hydro-bulging test, part I: models for stress components and bulging zone profile. Int J Mech Sci, 2014, 87: 297 doi: 10.1016/j.ijmecsci.2014.05.009 [10] He Z B, Yuan S J, Lin Y L, et al. Analytical model for tube hydro-bulging tests, part Ⅱ: linear model for pole thickness and its application. Int J Mech Sci, 2014, 87: 307 doi: 10.1016/j.ijmecsci.2014.05.010 [11] Yang L F, Hu G L, Liu J W. Investigation of forming limit diagram for tube hydroforming considering effect of changing strain path. Int J Adv Manuf Technol, 2015, 79(5-8): 793 doi: 10.1007/s00170-015-6842-7 [12] Cheng P Z, Lang L H, Ge Y L, et al. Tube free bulging experiment with force-end and material properties testing. J Beijing Univ Aeron Astron, 2015, 41(4): 686程鵬志, 郎利輝, 葛宇龍, 等. 力約束管材自由脹形試驗研究與材料性能測試. 北京航空航天大學學報, 2015, 41(4):686 [13] Ge Y L, Li X X, Lang L H, et al. Optimized design of tube hydroforming loading path using multi-objective differential evolution. Int J Adv Manuf Technol, 2017, 88(1-4): 837 doi: 10.1007/s00170-016-8790-2 [14] Hashemi R, Madoliat R, Afshar A. Prediction of forming limit diagrams using the modified M-K method in hydroforming of aluminum tubes. Int J Mater Form, 2016, 9(3): 297 doi: 10.1007/s12289-014-1207-6 [15] Abdelkefi A, Guermazi N, Boudeau N, et al. Effect of the lubrication between the tube and the die on the corner filling when hydroforming of different cross-sectional shapes. Int J Adv Manuf Technol, 2016, 87(1-4): 1169 doi: 10.1007/s00170-016-8552-1 [16] Li K, Yang L F, Wei J, et al. Design on a new type of tube impact hydroforming equipment. Forg Stamp Technol, 2017, 42(6): 77李坤, 楊連發, 魏軍, 等. 新型管材沖擊液壓成形裝置的設計. 鍛壓技術, 2017, 42(6):77 [17] Lin Y L, He Z B, Chu G N, et al. A new method for directly testing the mechanical properties of anisotropic materials in bi-axial stress state by tube bulging test. Acta Metall Sin, 2017, 53(9): 1101 doi: 10.11900/0412.1961.2017.00074林艷麗, 何祝斌, 初冠南, 等. 利用管狀試樣測試各向異性材料雙向應力狀態力學性能的新方法. 金屬學報, 2017, 53(9):1101 doi: 10.11900/0412.1961.2017.00074 [18] Xie W C, Yuan S J. Bulging behavior of thin-walled welded low carbon steel tubes. J Mater Eng, 2017, 45(1): 72 doi: 10.11868/j.issn.1001-4381.2015.000312謝文才, 苑世劍. 低碳鋼薄壁焊管液壓脹形行為. 材料工程, 2017, 45(1):72 doi: 10.11868/j.issn.1001-4381.2015.000312 [19] Yuan S J. Modern Hydroforming Technology. Beijing: National Defense Industry Press, 2009苑世劍. 現代液壓成形技術. 北京: 國防工業出版社, 2009 -