<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

油水兩相界面處緩蝕劑的作用效果及機理

賈巧燕 王貝 王赟 孟凡娟 王清 張雷 姚海元 路民旭 李清平

賈巧燕, 王貝, 王赟, 孟凡娟, 王清, 張雷, 姚海元, 路民旭, 李清平. 油水兩相界面處緩蝕劑的作用效果及機理[J]. 工程科學學報, 2020, 42(2): 225-232. doi: 10.13374/j.issn2095-9389.2019.01.11.001
引用本文: 賈巧燕, 王貝, 王赟, 孟凡娟, 王清, 張雷, 姚海元, 路民旭, 李清平. 油水兩相界面處緩蝕劑的作用效果及機理[J]. 工程科學學報, 2020, 42(2): 225-232. doi: 10.13374/j.issn2095-9389.2019.01.11.001
JIA Qiao-yan, WANG Bei, WANG Yun, MENG Fan-juan, WANG Qing, ZHANG Lei, YAO Hai-yuan, LU Min-xu, LI Qing-ping. Inhibition effect and mechanism of corrosion inhibitor at oil-water interface region[J]. Chinese Journal of Engineering, 2020, 42(2): 225-232. doi: 10.13374/j.issn2095-9389.2019.01.11.001
Citation: JIA Qiao-yan, WANG Bei, WANG Yun, MENG Fan-juan, WANG Qing, ZHANG Lei, YAO Hai-yuan, LU Min-xu, LI Qing-ping. Inhibition effect and mechanism of corrosion inhibitor at oil-water interface region[J]. Chinese Journal of Engineering, 2020, 42(2): 225-232. doi: 10.13374/j.issn2095-9389.2019.01.11.001

油水兩相界面處緩蝕劑的作用效果及機理

doi: 10.13374/j.issn2095-9389.2019.01.11.001
基金項目: 國家科技重大專項資助項目(2016ZX05028-004)
詳細信息
    通訊作者:

    E-mail:zhanglei@ustb.edu.cn

  • 中圖分類號: TG172.9

Inhibition effect and mechanism of corrosion inhibitor at oil-water interface region

More Information
  • 摘要: 利用旋轉圓柱電極,結合電化學方法(電化學交流阻抗、極化曲線)、激光掃描共聚焦顯微鏡、掃描電子顯微鏡和紫外-可見分光光度法研究了流動工況下油水分層介質中緩蝕劑在油水兩相界面處的作用效果及機理。結果表明,該工況下,100 mg·L?1十七烯基胺乙基咪唑啉季銨鹽緩蝕劑對碳鋼在油水兩相分層介質中的水區具有良好的緩蝕效果,緩蝕效率高達99%,但在油水兩相界面區域,由于油相的大量存在,導致緩蝕劑的有效質量分數降為混合前的31%,緩蝕效率僅為83%,緩蝕效果較差,碳鋼腐蝕未得到有效抑制,甚至出現了溝槽腐蝕。因此,在油區試樣腐蝕輕微,并且緩蝕劑的加入有效抑制了水區X65鋼的腐蝕。

     

  • 圖  1  十七烯基胺乙基咪唑啉季銨鹽的結構

    Figure  1.  Structure of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt

    圖  2  旋轉圓柱電極裝置示意圖

    Figure  2.  Schematic of the rotating cylindrical electrode

    圖  3  X65鋼在油水分層介質中的電化學測試結果. (a) 動電位極化曲線; (b) 陽極脫附平臺; (c) 腐蝕速率; (d) 緩蝕效率

    Figure  3.  Electrochemical test results of X65 steel in oil–water stratified medium: (a) potentiodynamic polarization curve; (b) anode desorption platform; (c) corrosion rate; (d) corrosion inhibition efficiency

    圖  4  X65鋼在油水分層介質不同區域中的交流阻抗譜. (a) 水區, 0; (b) 水區, 100 mg·L?1; (c) 耦合, 0; (d) 耦合, 100 mg·L?1

    Figure  4.  EIS results of X65 steel measured at different areas of oil–water stratified medium: (a) in water region, 0; (b) in water region, 100 mg·L?1; (c) coupled, 0; (d) coupled, 100 mg·L?1

    圖  5  EIS等效電路圖. (a) 單容抗;(b) 雙容抗;(c) 容抗 + 感抗 + 容抗

    Figure  5.  Equivalent circuit used for fitting the EIS results: (a) single capacitive reactance; (b) double capacitive reactance; (c) capacitive reactance + inductive reactance + capacitive reactance

    圖  6  EIS擬合結果所得Rp

    Figure  6.  Rp values of EIS fitting result

    圖  7  X65鋼在油水分層介質中浸泡24 h后的腐蝕形貌. (a) 未加OAI酸洗前; (b) 未加OAI酸洗后; (c) 加OAI酸洗前; (d) 加OAI酸洗后; (e) 激光共聚焦三維形貌

    Figure  7.  Corrosion morphology of X65 steel in oil–water stratified medium after immersion for 24 h: (a) before pickling without OAI; (b) after pickling without OAI; (c) before pickling with OAI; (d) after pickling with OAI; (e) 3D profile of microcorrosion morphologies

    圖  8  紫外可見分光光度計測試結果。(a) 純水相;(b) 油水分配后;(c) 特征峰吸光度

    Figure  8.  Test results of ultraviolet visible spectrophotometer: (a) in aqueous phase; (b) after oil and water partition; (c) characteristic peak absorbance

    圖  9  十七烯基胺乙基咪唑啉季銨鹽緩蝕劑在油水兩相分層介質不同區域中的作用機理. (a) 水區; (b) 兩相界面處; (c) 油區

    Figure  9.  Schematic diagram of mechanism of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt in different zones of oil–water stratified medium: (a) in water region; (b) at the oil–water interface; (c) in oil region

    表  1  實驗用X65鋼的化學成分(質量分數)

    Table  1.   Chemical composition of the X65 steel %

    CSiMnPMoSFe
    0.0400.2001.5000.0110.0200.003余量
    下載: 導出CSV

    表  2  油田地層水采出液的組分

    Table  2.   Composition of the test solution simulating the oilfield formation water mg·L?1

    Na+Mg2+Ca2+K+Cl${\rm{SO}}_4^{2 - }$${\rm{HCO}}_3^ - $
    262311920274764435297197519
    下載: 導出CSV

    表  3  等效電路各參數值

    Table  3.   Parameter values of the equivalent circuit

    介質質量濃度/
    (mg·L?1)
    時間/hRs/(Ω·cm2)CPEfRfCPEdlRct/(Ω·cm2)RL/(Ω·cm2)L/H
    ${Y_1}/({\rm{S}} \cdot {{\rm{s}}^{{n_1}}} \cdot {\rm{c}}{{\rm{m}}^{ - 2}})$n1${Y_2}/({\rm{S}} \cdot {{\rm{s}}^{{n_2}}} \cdot {\rm{c}}{{\rm{m}}^{ - 2}})$n2
    水區0211.389.070.80078.44
    68.1913.430.78987.22
    2439.1413840.8960.7018600.96622.51
    水區10020.010.0010.615331224.901218
    610.9837.320.671398139.700.857818.90864114370
    2426.93143.900.531926353.401105837511049
    耦合022.7214.960.77840.40
    627.5219.140.80043.85
    243.3527930.8624.4796990.9735.98
    耦合10023.196.510.750231.40
    61.0012680.3533.800.610.981344.50518.80193.20
    240.04752.200.4480.710.710.924364.901315631.80
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wang H W, Hong T, Cai J Y, et al. Enhanced mass transfer and wall shear stress in multiphase slow flow // Corrosion 2002. Denver, 2002: 02501
    [2] Cai J Y, Nesic S, de Waard C. Modeling of water wetting in oil-water pipe flow // Corrosion 2004. New Orleans, 2004: 04663
    [3] Lu M X, Bai Z Q, Zhao X W, et al. Actuality and typical cases for corrosion in the process of extraction, gathering, storage and transmission for oil and gas. Corros Prot, 2002, 23(3): 105 doi: 10.3969/j.issn.1005-748X.2002.03.005

    路民旭, 白真權, 趙新偉, 等. 油氣采集儲運中的腐蝕現狀及典型案例. 腐蝕與防護, 2002, 23(3):105 doi: 10.3969/j.issn.1005-748X.2002.03.005
    [4] Palacios C A, Shadley J R. CO2 corrosion of N-80 steel at 71 ℃ in a two-phase flow system. Corrosion, 1993, 49(8): 686 doi: 10.5006/1.3316101
    [5] Kang C, Gopal M, Jepson W P. Localized corrosion in multiphase pipelines // Corrosion 2004. New Orleans, 2004: 04381
    [6] Li Z L, Cheng Y F, Bi H S, et al. Research progress of CO2/H2S corrosion and inhibitor techniques in oil and gas fields. CIESC J, 2014, 65(2): 406 doi: 10.3969/j.issn.0438-1157.2014.02.006

    李自力, 程遠鵬, 畢海勝, 等. 油氣田CO2/H2S共存腐蝕與緩蝕技術研究進展. 化工學報, 2014, 65(2):406 doi: 10.3969/j.issn.0438-1157.2014.02.006
    [7] Nesic S, Wang S H, Cai J Y, et al. Integrated CO2 corrosion-multiphase flow model // SPE International Symposium on Oilfield Corrosion. Aberdeen, 2004: SPE-87555-MS
    [8] Zhang J X, Kang J, Fan J C, et al. Study on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industry. J Nat Gas Sci Eng, 2016, 32: 334 doi: 10.1016/j.jngse.2016.04.056
    [9] Cheng Y P, Bai Y, Li Z L, et al. Corrosion characteristics of X65 steel in CO2/oil /water environment of gathering pipeline. Chin J Eng, 2018, 40(5): 594

    程遠鵬, 白羽, 李自力, 等. 集輸管道CO2/油/水環境中X65鋼的腐蝕特征. 工程科學學報, 2018, 40(5):594
    [10] Goyal M, Kumar S, Bahadur I, et al. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: a review. J Molecular Liquids, 2018, 256: 565 doi: 10.1016/j.molliq.2018.02.045
    [11] Choi H, Tonsuwannarat T. Unique roles of hydrocarbons in flow-induced sweet corrosion of X-52 carbon steel in wet gas condensate producing wells // Corrosion 2002. Denver, 2002: 02559
    [12] Choi H J. Effect of liquid hydrocarbons on flow-induced sweet corrosion of carbon steel // Corrosion 2004. New Orleans, 2004: 04664
    [13] Liu X W, Zheng J S. Effects of a small amount of diesel fuel oil on corrosion of carbon steel in brine medium. Mater Prot, 1999, 32(1): 1 doi: 10.3969/j.issn.1001-1560.1999.01.001

    劉小武, 鄭家燊. 少量柴油對鹽水介質中碳鋼腐蝕的影響. 材料保護, 1999, 32(1):1 doi: 10.3969/j.issn.1001-1560.1999.01.001
    [14] Liu X W, Peng F M, Yu D Y, et al. Corrosion inhibitor for oil pipeline. Mater Prot, 2000, 33(8): 3 doi: 10.3969/j.issn.1001-1560.2000.08.002

    劉小武, 彭芳明, 俞敦義, 等. 輸油管線緩蝕劑的研究. 材料保護, 2000, 33(8):3 doi: 10.3969/j.issn.1001-1560.2000.08.002
    [15] Zhao J M, Li Y L, Gu F, et al. Influence of crude oil on inhibition performance of corrosion inhibitors in H2S/CO2 containing brines. Corros Sci Prot Technol, 2016, 28(5): 423

    趙景茂, 李玉龍, 谷豐, 等. H2S/CO2腐蝕環境中原油對緩蝕劑緩蝕性能的影響. 腐蝕科學與防護技術, 2016, 28(5):423
    [16] Liu L W, Zhao X R, Hu Q. Study on corrosion inhibiting efficiency of imidazoline corrosion inhibitor in oil-water coexistence condition. Oil-Gasfield Surf Eng, 2001, 20(1): 25 doi: 10.3969/j.issn.1006-6896.2001.01.015

    劉烈煒, 趙小蓉, 胡倩. 油水兩相共存下咪唑啉緩蝕劑的緩蝕效率. 油氣田地面工程, 2001, 20(1):25 doi: 10.3969/j.issn.1006-6896.2001.01.015
  • 加載中
圖(9) / 表(3)
計量
  • 文章訪問數:  1737
  • HTML全文瀏覽量:  1120
  • PDF下載量:  59
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-01-11
  • 刊出日期:  2020-02-01

目錄

    /

    返回文章
    返回