Measurement of friction factor in plastic forming of Zr-4 alloy based on ring compression and extrusion–simulation
-
摘要: 采用圓環壓縮法和擠壓–模擬法測定Zr-4合金有潤滑條件下的摩擦因子,討論了2種方法所測定摩擦因子存在差異的原因。研究結果表明,在模具(砧面)粗糙度Ra = 0.6 μm、實驗溫度700~800 ℃的條件下,采用圓環壓縮法獲得的Zr-4合金與模具的摩擦因子為0.18~0.27,摩擦因子隨實驗溫度的升高而增大。擠壓溫度為750 ℃時,采用擠壓–模擬法獲得的熱擠壓平均摩擦因子為0.35。測試結果存在較大差異的原因,是由于擠壓過程潤滑劑的剪切速率較圓環壓縮實驗大得多,且擠壓過程中潤滑劑所受壓應力約為圓環壓縮實驗中的兩倍,從而導致潤滑劑黏度的增大,表現為摩擦因子較高。圓環壓縮法獲得的摩擦因子更適合于Zr-4合金的鍛造等熱加工工況。Abstract: Nuclear-grade zirconium alloys are characterized by large deformation resistance, poor fluidity, strong viscosity, and narrow forming temperature range. They are widely used in the nuclear industry and are a good choice for structural components and fuel cladding materials for nuclear power reactors. Reasonable process parameters and tooling design are very important for the production of zirconium alloy products with excellent performance. Simulation is an important technical means in plastic forming process and tool structure optimization. A prerequisite for accurate simulation is to determine precise boundary conditions, such as friction factors in plastic forming process. In this study, the friction factors under the lubrication condition of Zr-4 alloy were determined by ring compression and extrusion simulation method. The reasons for the difference in friction factors measured by the two methods were discussed. The results show that when the roughness of the die (anvil) is Ra = 0.6 μm and the experimental temperature is 700?800 ℃, the friction factor between the Zr-4 alloy and the die obtained by the ring compression is 0.18?0.27, and the friction factor increases with increasing in the experimental temperature. When the extrusion temperature is 750 ℃, the average friction factor of hot-extrusion obtained by extrusion simulation is 0.35. The reason for the large difference in the test results is that the shear rate of the lubricant in the extrusion process is much larger than that of the ring compression experiment, and the compressive stress of the lubricant in the extrusion process is about twice that in the ring compression experiment, which leads to an increase in the lubricant viscosity so that the friction factor is higher. The friction factor obtained by the ring compression method is more suitable for hot working conditions such as the forging of Zr-4 alloys.
-
Key words:
- Zr-4 alloy /
- glass lubricants /
- ring compression /
- extrusion simulation /
- friction factor
-
表 1 圓環壓縮實驗結果
Table 1. Results of ring compression experiment
試樣 潤滑 壓縮速度/(mm·min?1) 實驗溫度/℃ 壓縮量/% 內徑變化/% 摩擦因子,mt 1 無 10 750 34 ?26.8 1 2 有 10 700 34.9 0.27 0.19±0.01 3 有 10 750 34.6 ?1.13 0.22±0.02 4 有 10 800 34.8 ?3.9 0.27±0.01 7 有 4 700 29.8 1.13 0.18±0.01 8 有 4 750 29.8 ?1.4 0.21±0.01 9 有 4 800 30.4 ?3.1 0.27±0.02 259luxu-164 -
參考文獻
[1] Wang L X, Zhang X Y, Xue X Y, et al. Study on the microstructure and texture of zirconium alloy tube. Rare Met Mater Eng, 2013, 42(1): 153 doi: 10.3969/j.issn.1002-185X.2013.01.031王麗霞, 張喜燕, 薛祥義, 等. 鋯合金擠壓管坯的組織及織構研究. 稀有金屬材料與工程, 2013, 42(1):153 doi: 10.3969/j.issn.1002-185X.2013.01.031 [2] Guo X C, Luan B F, Chen J W, et al. Distribution characteristics of precipitation of N18 zirconium alloy. Rare Met Mater Eng, 2011, 40(5): 813過錫川, 欒佰峰, 陳建偉, 等. N18鋯合金沉淀相分布特征的研究. 稀有金屬材料與工程, 2011, 40(5):813 [3] Li X H, Feng X W, Wang S C, et al. Microstructure, texture and mechanical properties of extruded Mg?Zn?Zr Mg alloy profiles. Rare Met Mater Eng, 2014, 43(12): 2927 doi: 10.1016/S1875-5372(15)60035-2 [4] Peng Q, Liu Y Z, Zhao W J, et al. Effect of hot-rolling temperature on the texture of N18 zirconium alloy plate. Nucl Power Eng, 2005, 26(1): 65 doi: 10.3969/j.issn.0258-0926.2005.01.015彭倩, 劉彥章, 趙文金, 等. 熱軋溫度對N18新鋯合金板材織構的影響. 核動力工程, 2005, 26(1):65 doi: 10.3969/j.issn.0258-0926.2005.01.015 [5] Li Y H. Induction heating of copper and copper alloy plastic deformation processing (Ⅰ). Met Work, 2016(7): 60 doi: 10.3969/j.issn.1674-165X.2016.07.024李韻豪. 銅及銅合金塑性變形加工的感應加熱(上). 金屬加工(熱加工), 2016(7):60 doi: 10.3969/j.issn.1674-165X.2016.07.024 [6] Liu C Y, Zhang R J, Yan Y N, et al. Lubrication behavior of the glass lubricated hot extrusion process. J Mech Eng, 2011, 47(20): 127劉長勇, 張人佶, 顏永年, 等. 玻璃潤滑熱擠壓工藝的潤滑行為分析. 機械工程學報, 2011, 47(20):127 [7] Yang F, Wei B L, Wang X F. Research advance and future direction of nuclear graded zirconium alloy. Met World, 2016(3): 24 doi: 10.3969/j.issn.1000-6826.2016.03.07楊鋒, 尉北玲, 王旭峰. 核級鋯合金研究現狀及我國核級鋯材發展方向. 金屬世界, 2016(3):24 doi: 10.3969/j.issn.1000-6826.2016.03.07 [8] Xue L P, Lu S L, Dou X F, et al. FE simulation of microstructure evolution and prediction of mechanical properties of hot deformed metals. J Univ Sci Technol Beijing, 2000, 22(1): 34 doi: 10.3321/j.issn:1001-053X.2000.01.010薛利平, 鹿守理, 竇曉峰, 等. 金屬熱變形時組織演化的有限元模擬及性能預報. 北京科技大學學報, 2000, 22(1):34 doi: 10.3321/j.issn:1001-053X.2000.01.010 [9] Wang L L, Zhou J, Duszczyk J, et al. Friction in aluminium extrusion—Part 1: A review of friction testing techniques for aluminium extrusion. Tribol Int, 2012, 56: 89 doi: 10.1016/j.triboint.2012.01.012 [10] Yan J, Lu S L. Study on friction boundary condition in metal hot deformation. J Univ Sci Technol Beijing, 1999, 21(6): 539 doi: 10.3321/j.issn:1001-053X.1999.06.008閻軍, 鹿守理. 金屬熱變形時摩擦邊界條件的確定. 北京科技大學學報, 1999, 21(6):539 doi: 10.3321/j.issn:1001-053X.1999.06.008 [11] Jiang G P, Liang R Q, Huang J N, et al. The calibration curves for the ring compression test. Forg Stamp Technol, 1981(3): 7江國屏, 梁人棋, 黃健寧, 等. 圓環塑性壓縮試驗的標定曲線. 鍛壓技術, 1981(3):7 [12] Ni J. Numerical Simulation and Extrusion Process, Die Structure Optimization of Zircaloy-4 Alloy Profile [Dissertation]. Beijing: University of Science and Technology Beijing, 2019倪嘉. 鋯合金型材擠壓數值模擬與工藝、模具結構優化[學位論文]. 北京: 北京科技大學, 2019 [13] Li L X, Peng D S, Liu J A, et al. An experimental study of the lubrication behavior of A5 glass lubricant by means of the ring compression test. J Mater Process Technol, 2000, 102(1-3): 138 doi: 10.1016/S0924-0136(99)00415-X [14] Molybdenum Disulfide Group of Tianjin Industrial Exhibition Hall. New Solid Lubrication Material, Molybdenum Disulfide. Tianjin: Tianjin People’s Publishing House, 1972天津市工業展覽館二硫化鉬小組. 新型固體潤滑材料, 二硫化鉬. 天津: 天津人民出版社, 1972 [15] Li L X, Peng D S, Liu Z Q. Study on the lubricities of glass and graphite in the deformation processing of the alloy TC4 at high temperatures. Rare Met Mater Eng, 2000, 29(4): 239 doi: 10.3321/j.issn:1002-185X.2000.04.007李落星, 彭大暑, 劉振球. 玻璃或石墨潤滑劑在TC4合金高溫變形過程中的行為研究. 稀有金屬材料與工程, 2000, 29(4):239 doi: 10.3321/j.issn:1002-185X.2000.04.007 [16] Chen H Z. Viscosity Measurement (Revision Ed). Beijing: China Metrology Publishing House, 2003陳惠釗. 黏度測量(修訂版). 北京: 中國計量出版社, 2003 -