<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

核電主管道非對稱雙管嘴同時擠壓成形工藝

錢凌云 王夢琦 孫朝陽 王小燦

錢凌云, 王夢琦, 孫朝陽, 王小燦. 核電主管道非對稱雙管嘴同時擠壓成形工藝[J]. 工程科學學報, 2019, 41(1): 124-133. doi: 10.13374/j.issn2095-9389.2019.01.014
引用本文: 錢凌云, 王夢琦, 孫朝陽, 王小燦. 核電主管道非對稱雙管嘴同時擠壓成形工藝[J]. 工程科學學報, 2019, 41(1): 124-133. doi: 10.13374/j.issn2095-9389.2019.01.014
QIAN Ling-yun, WANG Meng-qi, SUN Chao-yang, WANG Xiao-can. Simultaneous extrusion process of primary pipe with two asymmetrical branches[J]. Chinese Journal of Engineering, 2019, 41(1): 124-133. doi: 10.13374/j.issn2095-9389.2019.01.014
Citation: QIAN Ling-yun, WANG Meng-qi, SUN Chao-yang, WANG Xiao-can. Simultaneous extrusion process of primary pipe with two asymmetrical branches[J]. Chinese Journal of Engineering, 2019, 41(1): 124-133. doi: 10.13374/j.issn2095-9389.2019.01.014

核電主管道非對稱雙管嘴同時擠壓成形工藝

doi: 10.13374/j.issn2095-9389.2019.01.014
基金項目: 

裝備預研教育部聯合基金資助項目 05000012

中央高校基礎科研業務費資助項目 FRF-TP-17-057A1

中央高校基礎科研業務費資助項目 FRF-BD-18-003A

中國博士后科學基金面上資助項目 1175279

詳細信息
    通訊作者:

    孫朝陽, E-mail: suncy@ustb.edu.cn

  • 中圖分類號: TG376

Simultaneous extrusion process of primary pipe with two asymmetrical branches

More Information
  • 摘要: 針對AP1000核電主管道側向雙管嘴非對稱分布的特點, 本文在單軸單向壓力機平臺上增加提升油缸的運動作用, 提出雙管嘴同時擠壓成形的新工藝.首先, 分析了雙管嘴同時擠壓成形的工藝原理并建立了可實現同時成形的上頂桿及提升油缸的速度與管嘴尺寸之間的解析關系.其次, 建立雙管嘴同時擠壓成形的有限元模型, 分析了同時擠壓成形方案的可行性及在避免管嘴處材料撕裂缺陷方面的優勢.最后, 從降低成形載荷和關鍵部位晶粒尺寸以及提高組織均勻性的角度, 分析了坯料溫度、擠壓速度和摩擦條件三個重要因素的影響規律, 為實施主管道擠壓成形提供工藝參考.

     

  • 圖  1  核電主管道1:3縮比件的展直圖(a)和對應的擠壓件圖(b)(單位:mm)

    Figure  1.  Dimensions of 1:3 scaled non-bending primary pipe (a) and diagram of its extrusion design (b)(unit: mm)

    圖  2  雙管嘴同時擠壓成形的原理示意圖

    Figure  2.  Schematic diagram of simultaneous formation of two branches

    圖  3  雙管嘴同時擠壓成形的速度分布圖

    Figure  3.  Velocity profile of simultaneous formation of two branches

    圖  4  主管道尺寸示意圖及管嘴體積的近似計算

    Figure  4.  Schematic diagram of primary pipe with different dimensions and volume approximations for two branches

    圖  5  主要構件尺寸及有限元模型(單位:mm)

    Figure  5.  Finite element model and main dimensions(unit: mm)

    圖  6  模擬得到的主管道形狀

    Figure  6.  Simulated primary pipe

    圖  7  主管道成形的金屬流向示意圖

    Figure  7.  Simulated velocity distributions of primary pipe

    圖  8  上/下管嘴處P1點和P2點的速度分析

    Figure  8.  Velocities at Points P1 and P2

    圖  9  傳統單向擠壓方法和同時擠壓成形方法的速度分布比較. (a)選點示意圖; (b)傳統單向擠壓; (c)同時擠壓成形

    Figure  9.  Comparisons of velocity variations between traditional uniaxial extrusion and simultaneous extrusion method: (a)points marks; (b)traditional unidirectional extrusion; (c)simultaneous extrusion

    圖  10  q2點在不同應變ε的微觀組織演變過程. (a)ε=0;(b)ε=0.22;(c)ε=0.63;(d)ε=0.98

    Figure  10.  Microstructure evolution of Point q2 at different strains: (a)ε=0;(b)ε=0.22;(c)ε=0.63;(d)ε=0.98

    圖  11  傳統單向擠壓(a)和同時擠壓成形(b)的溫度分布、動態再結晶體積分數和平均晶粒尺寸對比

    Figure  11.  Comparison of temperature distributions, dynamic recrystallization volume fractions, and average grain sizes of traditional unidirectional extrusion (a) and simultaneous extrusion processes (b)

    圖  12  坯料溫度(a)、擠壓速度(b)和摩擦系數(c)對晶粒尺寸及最大擠壓力的影響

    Figure  12.  Effects of billet temperature(a), extrusion speed (b), and friction coefficient (c) on grain size and peak extrusion force

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Pan P L, Zhong Y X, Ma Q X, et al. Development of manufacture technology for main pipe of large-sized nuclear power. China Metal form Equip Manuf Technol, 2011, 46(1): 13 doi: 10.3969/j.issn.1672-0121.2011.01.002

    潘品李, 鐘約先, 馬慶賢, 等. 大型核電主管道制造技術的發展. 鍛壓裝備與制造技術, 2011, 46(1): 13 doi: 10.3969/j.issn.1672-0121.2011.01.002
    [2] Lu H X. Research and development of AP1000 reactor coolant pipe in China. Shanghai Met, 2010, 32(4): 29 doi: 10.3969/j.issn.1001-7208.2010.04.008

    盧華興. AP1000核電站主管道國產化研制進展. 上海金屬, 2010, 32(4): 29 doi: 10.3969/j.issn.1001-7208.2010.04.008
    [3] Zhang L, Feng X, Li M Q, et al. Development of nuclear power main-pipe manufacturing technology. Forg Stamp Technol, 2014, 39(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201406001.htm

    張磊, 馮瀟, 李明權, 等. 核電主管道制造工藝發展. 鍛壓技術, 2014, 39(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201406001.htm
    [4] Sun L M, Peng X K, Guo L, et al. Research on the hot extrusion forming technology of super-pipe nozzles used in nuclear power station. Forg Stamp Technol, 2014, 39(12): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201409012.htm

    孫立明, 彭先寬, 郭磊, 等. 核電站用超級管道管嘴的熱擠壓成形工藝研究. 鍛壓技術, 2014, 39(12): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201409012.htm
    [5] Sun F X, Ma Q X. Research on the control forging processes for AP1000 main pipe. Heavy Cast Forg, 2010(4): 30 doi: 10.3969/j.issn.1004-5635.2010.04.010

    孫鳳先, 馬慶賢. AP1000主管道控制鍛造工藝探索. 大型鑄鍛件, 2010(4): 30 doi: 10.3969/j.issn.1004-5635.2010.04.010
    [6] Xiang Y. The Combined Lateral and Axial Extrusion Process of A Branched Component with Two Asymmetrically Radial Features for AP1000 Promary Pipe[Dissertation]. Beijing: University of Science and Technology Beijing, 2016

    祥雨. AP1000核電主管道帶不對稱雙側枝實心坯料擠壓工藝研究[學位論文]. 北京: 北京科技大學, 2016
    [7] Wang X, Zhang L, Feng X, et al. Radial upset-extruding die design and stress analysis on branch pipe of nuclear power AP1000 main-pipe. Forg Stamp Technol, 2015, 40(10): 96 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201510029.htm

    王欣, 張磊, 馮瀟, 等. AP1000核電主管道支管嘴徑向鐓擠模具設計及應力分析. 鍛壓技術, 2015, 40(10): 96 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201510029.htm
    [8] Sun C Y, Xiang Y, Fu M W, et al. The combined lateral and axial extrusion process of a branched component with two asymmetrically radial features. Mater Des, 2016, 111: 492 doi: 10.1016/j.matdes.2016.09.008
    [9] Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel. Mater Charact, 2016, 118: 92 doi: 10.1016/j.matchar.2016.05.015
    [10] Sun C Y, Li Y M, Xiang Y, et al. Hot deformation behavior and hot processing maps of 316LN stainless steel. Rare Met Mater Eng, 2016, 45(3): 688 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201603028.htm

    孫朝陽, 李亞民, 祥雨, 等. 316LN高溫熱變形行為與熱加工圖研究. 稀有金屬材料與工程, 2016, 45(3): 688 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201603028.htm
    [11] Zhang P P, Sui D S, Qi K, et al. Modeling of flow stress and dynamic recrystallization for 316LN steel during hot deformation. J Plast Eng, 2014, 21(1): 44 doi: 10.3969/j.issn.1007-2012.2014.01.009

    張佩佩, 隋大山, 齊珂, 等. 316LN鋼高溫流動應力與動態再結晶模型. 塑性工程學報, 2014, 21(1): 44 doi: 10.3969/j.issn.1007-2012.2014.01.009
    [12] Wang S L, Yang B, Zhang M X, et al. Numerical simulation and experimental verification of microstructure evolution in large forged pipe used for AP1000 nuclear power plants. Ann Nucl Energy, 2016, 87: 176 doi: 10.1016/j.anucene.2015.07.042
    [13] Cheng M. Research of Stainless Steel 340 Triple-Valve Body Multidirectional Extrusion Deformation[Dissertation]. Taiyuan: North University of China, 2013

    程眉. 304不銹鋼閥體多向溫擠壓成形研究[學位論文]. 太原: 中北大學, 2013
  • 加載中
圖(12)
計量
  • 文章訪問數:  738
  • HTML全文瀏覽量:  324
  • PDF下載量:  14
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-06-12
  • 刊出日期:  2019-01-01

目錄

    /

    返回文章
    返回