-
摘要: 為了探討Cr3C2強化相提高Cr3C2/Ni3Al復合材料耐磨性的機制, 本文采用熱等靜壓技術制備了Ni3Al合金和Cr3C2/Ni3Al復合材料, 借助納米壓痕儀對Ni3Al合金和Cr3C2/Ni3Al復合材料中各組成相的力學性能進行了表征, 利用銷-盤式摩擦磨損試驗機研究了熱等靜壓Ni3Al合金和Cr3C2/Ni3Al復合材料的耐磨性能, 并結合掃描電子顯微鏡和納米壓痕儀分析了材料磨損表面形貌和磨損次表面層硬度變化.結果表明, Cr3C2的添加提高了復合材料基體的硬度, Cr3C2/Ni3Al復合材料中各組成相的納米硬度和彈性模量由基體相、擴散相到硬芯相是逐漸增大的, 呈現出梯度變化, 有利于提高Cr3C2/Ni3Al復合材料的耐磨性.在本研究實驗條件下, Ni3Al合金和Cr3C2/Ni3Al復合材料表面的磨損形式主要為磨粒磨損, Cr3C2/Ni3Al復合材料表現出更加優異的耐磨性能.Cr3C2/Ni3Al復合材料耐磨性能的提高主要跟碳化物強化相阻斷磨粒切削、減弱摩擦副間相互作用、減小加工硬化層厚度、磨粒尺寸等因素有關.Abstract: The Ni3Al intermetallic compound is considered an excellent wear-resistant material. The addition of Cr3C2 particles can further improve the wear resistance of Ni3Al-based alloys. In order to elucidate the wear mechanism of Cr3C2/Ni3Al composites improved by the Cr3C2 strengthening phase, Ni3Al-alloy and Cr3C2/Ni3Al composites were prepared by the hot isostatic pressing process in this study. The mechanical properties and wear resistance of each phase in the Ni3Al-alloy and Cr3C2/Ni3Al composites were investigated using a nano-indentation instrument and a pin-on-disk friction and wear tester, respectively. The worn surface morphologies and the hardness of the subsurface layer under the worn surfaces of the Ni3Al-alloy and Cr3C2/Ni3Al composites were determined by a scanning electron microscopy (SEM) and a nano-indentation instrument. The results indicate that the hardness of the matrix phase in the Cr3C2/Ni3Al composites is significantly improved by the addition of Cr3C2 particles. The nano-hardness and the elastic modulus of each phase in the Cr3C2/Ni3Al composites gradually increase from matrix phase through diffusion phase to hard core phase. The mechanical properties between the matrix, diffusion, and hard core phases in the Cr3C2/Ni3Al composites present a gradient transition. This kind of structure distribution is good for enhancing the wear resistance of Cr3C2/Ni3Al composite materials. As for friction and wear conditions in this study, abrasive wear was the dominant wear mechanism, which occurred on the surfaces of the Ni3Al-alloy and Cr3C2/Ni3Al composites. The Cr3C2/Ni3Al composites showed a good wear resistant property. The carbide-strengthening phase can block up the cutting action of the wear debris, reduce the interaction between the wear materials, and decrease the thickness of the subsurface layer and the size of the wear debris, resulting in improved wear resistance of Cr3C2/Ni3Al composites.
-
Key words:
- composites /
- Cr3C2 strengthen phase /
- Ni3Al-based /
- wear resistance /
- mechanism analysis
-
表 1 Ni3Al合金和Cr3C2/Ni3Al復合材料中各組成相的納米壓痕結果
Table 1. Nanoindentation measurement results of different constitution phases in the Ni3Al-alloy and Cr3C2/Ni3Al composites
材料 相組成 最大深度,h/μm 納米硬度,H/GPa 彈性模量,E/GPa Ni3Al合金 第二相 0.315 3.14 160.89 基材相 0.265 5.32 197.58 Cr3C2/Ni3Al 復合材料 硬芯相 0.149 18.24 352.60 擴散相 0.158 16.73 291.76 基材相 0.240 6.34 211.81 259luxu-164 -
參考文獻
[1] Zhai W Z, Shi X L, Yao J, et al. Investigation of mechanical and tribological behaviors of multilayer graphene reinforced Ni3Al matrix composites. Compos Part B, 2015, 70: 149 doi: 10.1016/j.compositesb.2014.10.052 [2] Gong K, Luo H L, Feng D, et al. Wear of Ni3Al-based materials and its chromium-carbide reinforced composites. Wear, 2008, 265(11-12): 1751 doi: 10.1016/j.wear.2008.04.038 [3] Jozwik P, Polkowski W, Bojar Z. Application of Ni3Al based intermetallic alloys-current stage and potential perceptivities. Materials, 2015, 8(5): 2537 doi: 10.3390/ma8052537 [4] An T B, Gong K, Luo H L, et al. Analysis on microstructure and friction wear performance of chromium carbide/Ni3Al composite surfacing layer. Trans Chin Weld Inst, 2012, 33(2): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201202029.htm安同邦, Gong Karin, 駱合力, 等. 碳化鉻/Ni3Al復合堆焊層組織及摩擦磨損分析. 焊接學報, 2012, 33(2): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201202029.htm [5] Miura S, Goldenstein H, Ohkubo K, et al. Mechanical and physical properties of Ni3Al-based alloys with Cr carbides dispersion. Mater Sci Forum, 2007, 561-565: 439 doi: 10.4028/www.scientific.net/MSF.561-565.439 [6] Goldenstein H, Silva Y N, Yoshimura H N. Designing a new family of high temperature wear resistant alloys based on Ni3Al IC: experimental results and thermodynamic modelling. Intermetallics, 2004, 12(7-9): 963 doi: 10.1016/j.intermet.2004.02.027 [7] Cios G, Ba?a P, Ste, pień M, et al. Microstructure of cast Ni-Cr-Al-C alloy. Arch Metall Mater, 2015, 60(1): 145 doi: 10.1515/amm-2015-0022 [8] An T B, Luo H L, Peng Y, et al. Characteristic analysis on Cr3C2/Ni3Al hardfacing alloy layer. Ordnance Mater Sci Eng, 2010, 33(2): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201002019.htm安同邦, 駱合力, 彭云, 等. Cr3C2/Ni3Al表面堆焊合金層的特征分析. 兵器材料科學與工程, 2010, 33(2): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201002019.htm [9] da Silva W S, Souza R M, Mello J D B, et al. Room temperature mechanical properties and tribology of NICRALC and Stellite casting alloys. Wear, 2011, 271(9-10): 1819 doi: 10.1016/j.wear.2011.02.030 [10] Gu G R, Luo H L, Li S P, et al. Microstructure and abrasive wear resistance of Cr3C2/Ni3Al composite. J Aeron Mater, 2007, 27(4): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB200704012.htm顧國榮, 駱合力, 李尚平, 等. Cr3C2/Ni3Al復合材料的組織與耐磨性能. 航空材料學報, 2007, 27(4): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB200704012.htm [11] Li S P, Luo H L, Cao X, et al. Microstructure and room-temperature wear-resistance of Cr3C2/Ni3Al composites. Rare Met Mater Eng, 2008, 37(1): 115 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE200801028.htm李尚平, 駱合力, 曹栩, 等. Cr3C2/Ni3Al復合材料的微觀組織和室溫耐磨性. 稀有金屬材料與工程, 2008, 37(1): 115 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE200801028.htm [12] Du L Z, Zhang W G, Zhang D J, et al. Preparation and characterization of Ni-Al-Cr3C2 coating. Key Eng Mater, 2008, 373-374: 15 doi: 10.4028/www.scientific.net/KEM.373-374.15 [13] Zhu S Y, Bi Q L, Yang J, et al. Influence of Cr content on tribological properties of Ni3Al matrix high temperature self-lubricating composites. Tribol Int, 2011, 44(10): 1182 doi: 10.1016/j.triboint.2011.05.014 [14] Fu L H, Han W, Li C H, et al. Microstructure and phases constitution of Cr3C2/Ni3Al composites prepared by hot isostatic pressing (HIP). J Iron Steel Res, 2016, 28(12): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201612010.htm傅麗華, 韓偉, 李長海, 等. 熱等靜壓Cr3C2/Ni3Al復合材料的微觀組織及相組成. 鋼鐵研究學報, 2016, 28(12): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201612010.htm [15] Fu L H, Han W, Gong K, et al. Microstructure and tribological properties of Cr3C2/Ni3Al composite materials prepared by hot isostatic pressing (HIP). Mater Des, 2017, 115: 203 http://www.sciencedirect.com/science/article/pii/S0264127516314472 [16] Ma Y X, Gao Y F, Zeng Y Y. Determination of mechanical properties of phase in directionally-solidified nickel-base super-alloy by nano-indentation. Phys Examin Test, 2015, 33(2): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-WLCS201502006.htm馬亞鑫, 高怡斐, 曾雨吟. 納米壓痕法測定鎳基定向凝固高溫合金相的力學性能. 物理測試, 2015, 33(2): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-WLCS201502006.htm [17] Qi Y H, Guo J T, Cui C Y. Tensile creep behaviour of NiAl-Cr(Zr) multiphase intermetallic alloy. Mater Sci Technol, 2003, 19(3): 339 doi: 10.1179/026708303225009689 [18] Ge P L, Bao M D, Zhang H J, et al. Effect of plasma nitriding on adhesion strength of CrTiAlN coatings on H13 steels by closed field unbalanced magnetron sputter ion plating. Surf Coat Technol, 2013, 229: 146 http://www.sciencedirect.com/science/article/pii/S0257897212007773 [19] Gong K. A Ni3Al-Alloy and its Composites as Potential Wear Resistant Materials for Advanced Applications[Dissertation]. Goteborg: Chalmers University of Technology, 2011 -