-
摘要: 為進一步提升鈦酸鋰材料的性能, 本文在傳統靜電紡絲技術的基礎上, 將紡絲噴頭改進成內外嵌套的同軸噴頭, 以兩種溶液的形式進行同軸共紡, 得到了具有空心結構的鈦酸鋰纖維絲.將其與傳統靜電紡絲法制備的實心結構鈦酸鋰纖維絲進行對比, 結果表明: 空心鈦酸鋰材料粒度均一、無團聚現象, 材料具有明顯的空心結構, 結晶性能良好, 比表面積是實心結構的1.3倍.形貌結構的改善極大地提高了空心鈦酸鋰材料的電化學性能, 表現為小倍率下二者的放電比容量接近理論比容量, 但在20C倍率下空心結構的鈦酸鋰材料優于實心鈦酸鋰, 仍可達到130 mA·h·g-1, 循環200周后容量保持率仍達98%, 具有良好的穩定性; 循環伏安和交流阻抗曲線也表明: 空心結構使得鈦酸鋰材料的極化程度減少, 電化學反應阻抗降低, 更有利于電化學反應的進行.Abstract: Lithium titanate (Li4Ti5O12, LTO) is an important material to be used as an anode for LIBs (Li+ ion battery). LTO is a zero-strain material (i.e., no structural change occurs during Li insertion/extraction). Although LTO is a very safe material that can be used as an anode material in high and low temperature environment, its rate capability is compromised by its low electronic conductivity and poor Li+ diffusion coefficient. In the recent years, considerable research around the world has focused on improving LTO rate performance. Efforts to achieve better electrical conduction between LTO particles have included LTO particle size control, conductive-material surface coatings, and alien ion doping. However, in this study electrochemical properties were improved by changing the morphology of LTO. Based on traditional electrospinning technology, LTO fibers with a hollow structure were produced using a nested coaxial nozzle modified from the conventional spinning nozzle and coaxial cospinning with two different solutions. A comparison of this results with those of solid LTO prepared by traditional electrospinning technology demonstrates that hollow LTO is characterized by uniform particle size and no agglomeration, along with an obvious hollow structure, clear crystal lattice stripes, and good crystallization property. The specific surface of this hollow LTO is 1.3 times than its solid counterpart. This morphological change greatly improves the electrochemical performance of the material. Although the discharge specific capacities of both the solid and hollow LTO are close to the theoretical value for small ratios, the hollow LTO is superior to its solid counterpart at 20C. The discharge specific capacity of the hollow LTO can reach 130 mA·h·g-1 at 20C, and after 200 cycles, its capacity retention ratio remains at 98%, which suggests good stability. Cyclic voltammetry and AC impedance curves also show that the hollow structure reduces the degree of polarization and the electrochemical reaction impedance of LTO, which makes LTO more conducive to electrochemical reaction.
-
Key words:
- lithium titanate /
- electrospinning /
- hollow structure /
- energy storage /
- lithium-ion battery
-
表 1 實心鈦酸鋰材料和空心鈦酸鋰材料比表面積值
Table 1. Specific surface data of SLTO and HLTO
樣品種類 比表面積/(m2·g-1) 實心鈦酸鋰材料 8.502 空心鈦酸鋰材料 11.156 表 2 實心鈦酸鋰材料和空心鈦酸鋰材料循環伏安對比
Table 2. Comparison of cyclic voltammetries of SLTO and HLTO
樣品 φa/V φc/V (φa-φc)/mV 空心鈦酸鋰材料 1.6229 1.5228 100.1 實心鈦酸鋰材料 1.6376 1.5048 132.8 表 3 實心鈦酸鋰材料和空心鈦酸鋰材料電池的交流阻抗阻值
Table 3. Fitted EIS data of SLTO and HLTO
阻抗值 Rs/Ω Rct/Ω 實心鈦酸鋰材料 6.02 70.26 空心鈦酸鋰材料 5.38 38.14 259luxu-164 -
參考文獻
[1] Liu Y X, Hou X Z, Li L X, et al. Application of lithium titanate battery in industrialization of urban transit electric vehicles. Smart Grid, 2014, 4: 280劉永相, 侯興哲, 李林霞, 等. 鈦酸鋰電池在城市公交電動產業化中的應用. 智能電網, 2014, 4: 280 [2] Huang R F. Analysis for the applications of lithium titanate battery in the MW-class energy storage systems. Energy Storage Sci Technol, 2015, 4(3): 290 doi: 10.3969/j.issn.2095-4239.2015.03.008黃任飛. 鈦酸鋰電池在兆瓦級儲能系統中的應用分析. 儲能科學與技術, 2015, 4(3): 290 doi: 10.3969/j.issn.2095-4239.2015.03.008 [3] Ni H F, Fan L Z. Developments on spinel Li4Ti5O12 as anode material. J Chin Ceram Soc, 2012, 40(4): 548 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201204016.htm倪海芳, 范麗珍. 尖晶石型Li4Ti5O12負極材料的研究進展. 硅酸鹽學報, 2012, 40(4): 548 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201204016.htm [4] Li Z Y, Li J L, Zhao Y G, et al. Influence of cooling mode on the electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries. Ionics, 2016, 22(6): 789 doi: 10.1007/s11581-015-1610-0 [5] Deptu?a A, ?ada W, Olczak T, et al. Preparation of lithium titanate by sol-gel method. Nukleonika, 2001, 46(3): 95 [6] Zhang Y Y, Wang D, Zhang C M, et al. Research progress on Li4Ti5O12 as anode material for Li-ion battery synthesized by hydrothermal method. Chin J Power Sources, 2014, 38(11): 2202 doi: 10.3969/j.issn.1002-087X.2014.11.070張遙遙, 王丹, 張春明, 等. 水熱法制備鋰離子電池負極材料Li4Ti5O12研究進展. 電源技術, 2014, 38(11): 2202 doi: 10.3969/j.issn.1002-087X.2014.11.070 [7] Liu W, Zhang N, Bai Y, et al. Synthesis of lithium-ion battery anode material Li4Ti5O12 by the microwave assisted sol-gel method. J Chin Ceram Soc, 2010, 38(12): 2279 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201012014.htm劉微, 張妮, 白陽, 等. 微波輔助溶膠-凝膠法合成鋰離子電池負極材料Li4Ti5O12. 硅酸鹽學報, 2010, 38(12): 2279 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201012014.htm [8] Gong X, Yang J L, Jiang Y L, et al. Application of electrospinning technique in power lithium-ion batteries. Prog Chem, 2014, 26(1): 41 http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXJZ201401005.htm [9] Li X L, Zhang Y, You Y H, et al. Ionothermal synthesis and electrochemical properties of Li4Ti5O12 anode material. J Chin Ceram Soc, 2013, 41(1): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201301003.htm李學良, 張楊, 尤亞華, 等. 離子熱法制備Li4Ti5O12負極材料及其電化學性能. 硅酸鹽學報, 2013, 41(1): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201301003.htm [10] Haridas A K, Sharma C S, Rao T N. Electrochemical performance of lithium titanate submicron rods synthesized by sol-gel/electrospinning. Electroanalysis, 2014, 26(11): 2315 doi: 10.1002/elan.201400233 [11] Yu Q, Wang M, Chen H. Fabrication of ordered TiO2 nanoribbon arrays by electrospinning. Mater Lett, 2010, 64(3): 428 doi: 10.1016/j.matlet.2009.11.039 [12] Zhang W H, Liu C K, Sun R J, et al. Effect of electrospinning parameters on diameter and orientation of nanofiber. Synth Fiber China, 2011, 40(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-HCXW201101010.htm張娓華, 劉呈坤, 孫潤軍, 等. 靜電紡參數對納米纖維直徑及定向性的影響. 合成纖維, 2011, 40(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-HCXW201101010.htm [13] Cho Y, Lee S, Lee Y, et al. Spinel-layered core-shell cathode materials for Li-ion batteries. Adv Energy Mater, 2011, 1(5): 821 doi: 10.1002/aenm.201100239 [14] Vaseashta A. Controlled formation of multiple Taylor cones in electrospinning process. Appl Phys Lett, 2007, 90(9): 093115-1 doi: 10.1063/1.2709958 [15] Moghe A K, Gupta B S. Co-axial electrospinning for nanofiber structures: preparation and applications. Polym Rev, 2008, 48(2): 353 doi: 10.1080/15583720802022257 -