[1] |
Wang F, Eskin D, Connolley T, et al. Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al-0.4Ti alloy. J Cryst Growth, 2016, 435: 24 doi: 10.1016/j.jcrysgro.2015.11.034
|
[2] |
Moholkar V S, Rekveld S, Warmoeskerken M M C G. Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor. Ultrasonics, 2000, 38(1-8): 666 doi: 10.1016/S0041-624X(99)00204-8
|
[3] |
Li X T, Li T J, Li X M, et al. Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy. Ultrason Sonochem, 2006, 13(2): 121 doi: 10.1016/j.ultsonch.2005.08.005
|
[4] |
Eskin G I. Effect of ultrasonic (cavitation) treatment of the melt on the microstructure evolution during solidification of aluminum alloy ingots. Z Metallkd, 2002, 93(6): 502 doi: 10.3139/146.020502
|
[5] |
Komarov S V, Kuwabara M, Abramov O V. High power ultrasonic in pyrometallurgy: current status and recent development. ISIJ Int, 2005, 45(12): 1765 doi: 10.2355/isijinternational.45.1765
|
[6] |
Chen D X, Li X Q, Li Z H, et al. Microstructure and macro-segregation law of ultrasonic cast 7050 aluminum alloy ingots. J Univ Sci Technol Beijing, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm陳鼎欣, 李曉謙, 黎正華, 等. 超聲鑄造7050鋁合金的微觀組織和宏觀偏析規律. 北京科技大學學報, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm
|
[7] |
Li Z H, Li X Q, Hu S C, et al. Effect of 7050 aluminum alloy melt treated by ultrasonic on macrosegregation in ingot. J Cent South Univ Sci Technol, 2011, 42(9): 2669 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109023.htm黎正華, 李曉謙, 胡仕成, 等. 熔體超聲處理對7050鋁合金鑄錠宏觀偏析的影響. 中南大學學報(自然科學版), 2011, 42(9): 2669 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109023.htm
|
[8] |
Li R Q, Liu Z L, Dong F, et al. Grain refinement of a large-scale Al alloy casting by introducing the multiple ultrasonic generators during solidification. Metall Mater Trans A, 2016, 47(8): 3790 doi: 10.1007/s11661-016-3576-6
|
[9] |
Tudela I, Sáez V, Esclapez M D, et al. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review. Ultrason Sonochem, 2014, 21(3): 909 doi: 10.1016/j.ultsonch.2013.11.012
|
[10] |
Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason Sonochem, 2001, 8(3): 319 doi: 10.1016/S1350-4177(00)00074-2
|
[11] |
Liu X B, Osawa Y, Takamori S, et al. Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Mater Sci Eng A, 2008, 487(1-2): 120 doi: 10.1016/j.msea.2007.09.071
|
[12] |
Eskin G I. Principles of ultrasonic treatment: application for light alloys melts. Adv Perform Mater, 1997, 4(2): 223 doi: 10.1023/A:1008603815525
|
[13] |
Nie M X. Cavitation prevention with roughened surface. J Hydraul Eng, 2015, 127(10): 878
|
[14] |
Doyle W M. Aluminum alloys: structure and properties. Met Sci, 1976, 35(11): 408
|
[15] |
Li X T, Zhao J Q, Ning S B, et al. Effect of high-intensity ultrasonic on the solidification of Al-1%Si alloy by horizontally continuous cast. Rare Met Mater Eng, 2006, 35(Suppl 2): 284 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2006S2070.htm李新濤, 趙建強, 寧紹斌, 等. 功率超聲對水平連鑄Al-1%Si合金凝固的影響. 稀有金屬材料與工程, 2006, 35(增刊2): 284 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2006S2070.htm
|
[16] |
Fan X M. Metal Solidification Theory and Technology. Wuhan: Wuhan University of Technology Press, 2012范曉明. 金屬凝固理論與技術. 武漢: 武漢理工大學出版社, 2012
|
[17] |
Xu T, Zhang L H, Li R Q, et al. Numerical simulation and experimental study of multi-field coupling for semi-continuous casting of large-scale aluminum ingots with ultrasonic treatment. Chin J Eng, 2016, 38(9): 1270 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201609011.htm徐婷, 張立華, 李瑞卿, 等. 鋁合金大鑄錠超聲半連鑄多場耦合的數值模擬與實驗研究. 工程科學學報, 2016, 38(9): 1270 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201609011.htm
|
[18] |
Dong F, Li X Q, Zhang L H, et al. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt. Ultrason Sonochem, 2016, 31: 150 doi: 10.1016/j.ultsonch.2015.12.009
|