<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

改性多孔鋼渣/橡膠復合材料的制備及其性能

張浩 張欣雨

張浩, 張欣雨. 改性多孔鋼渣/橡膠復合材料的制備及其性能[J]. 工程科學學報, 2019, 41(1): 88-95. doi: 10.13374/j.issn2095-9389.2019.01.009
引用本文: 張浩, 張欣雨. 改性多孔鋼渣/橡膠復合材料的制備及其性能[J]. 工程科學學報, 2019, 41(1): 88-95. doi: 10.13374/j.issn2095-9389.2019.01.009
ZHANG Hao, ZHANG Xin-yu. Preparation of modified porous steel slag/rubber composite materials and its properties[J]. Chinese Journal of Engineering, 2019, 41(1): 88-95. doi: 10.13374/j.issn2095-9389.2019.01.009
Citation: ZHANG Hao, ZHANG Xin-yu. Preparation of modified porous steel slag/rubber composite materials and its properties[J]. Chinese Journal of Engineering, 2019, 41(1): 88-95. doi: 10.13374/j.issn2095-9389.2019.01.009

改性多孔鋼渣/橡膠復合材料的制備及其性能

doi: 10.13374/j.issn2095-9389.2019.01.009
基金項目: 

中國博士后科學基金資助項目 2017M612051

國家自然科學基金資助項目 51206002

冶金減排與資源綜合利用教育部重點實驗室(安徽工業大學)資助項目 KF17-08

安徽省博士后研究人員科研活動經費資助項目 2017B168

詳細信息
    通訊作者:

    張浩, E-mail: fengxu19821018@163.com

  • 中圖分類號: TB332

Preparation of modified porous steel slag/rubber composite materials and its properties

More Information
  • 摘要: 用磷酸、硅烷KH550和鋼渣制備改性多孔鋼渣, 以改性多孔鋼渣取代部分炭黑.利用改性多孔鋼渣、炭黑、橡膠、促進劑、硫磺、硬脂酸和氧化鋅進行復合, 制備一系列改性多孔鋼渣/橡膠復合材料, 研究了磷酸/鋼渣質量比、硅烷KH550/多孔鋼渣質量比、促進劑/硫磺質量比、硬脂酸/氧化鋅質量比和改性多孔鋼渣/炭黑質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響, 并且分析其影響機理.結果表明, 當磷酸用量為1.2 g、鋼渣用量為30 g、硅烷KH550用量為0.3 g、炭黑用量為20 g、促進劑用量為0.8 g、硫磺用量為1.2 g、硬脂酸用量為0.8 g、氧化鋅用量為2.2 g和橡膠用量為100 g時, 改性多孔鋼渣/橡膠復合材料的力學性能較好, 即拉伸強度為18.4 MPa、邵爾A硬度為68.8、撕裂強度為44.6 kN·m-1.磷酸與硅烷KH550可以改善鋼渣的孔結構與表面結構; 適量的促進劑/硫磺質量比與硬脂酸/氧化鋅質量比可以消除硫磺形成的內硫環, 促使橡膠交聯鍵穩定.改性多孔鋼渣與橡膠以物理方式進行復合形成良好的包裹結構.

     

  • 圖  1  不同硅烷KH550/多孔鋼渣質量比改性多孔鋼渣的傅里葉變換紅外光譜.(a)鋼渣;(b)4#改性多孔鋼渣;(c)2#改性多孔鋼渣;(d)5#改性多孔鋼渣

    Figure  1.  Fourier transform infrared spectroscopy of modified porous steel slag in different mass ratios of silane KH550/porous steel slag: (a) steel slag; (b) 4# modified porous steel slag; (c) 2# modified porous steel slag; (d) 5# modified porous steel slag

    圖  2  不同促進劑/硫磺質量比改性多孔鋼渣/橡膠復合材料的掃描電鏡圖. (a)6#改性多孔鋼渣/橡膠復合材料;(b)2#改性多孔鋼渣/橡膠復合材料;(c)7#改性多孔鋼渣/橡膠復合材料

    Figure  2.  SEM of modified porous steel slag/rubber composite materials in different mass ratios of accelerator/sulfur: (a) 6# modified porous steel slag/rubber composite materials; (b) 2# modified porous steel slag/rubber composite materials; (c) 7# modified porous steel slag/rubber composite materials

    圖  3  不同硬脂酸/氧化鋅質量比改性多孔鋼渣/橡膠復合材料的掃描電鏡圖.(a)8#改性多孔鋼渣/橡膠復合材料;(b)2#改性多孔鋼渣/橡膠復合材料;(c)9#改性多孔鋼渣/橡膠復合材料

    Figure  3.  SEM of modified porous steel slag/rubber composite materials in different mass ratios of stearic acid/zinc oxide: (a) 8# modified porous steel slag/rubber composite materials; (b) 2# modified porous steel slag/rubber composite materials; (c) 9# modified porous steel slag/rubber composite materials

    圖  4  改性多孔鋼渣(a)、橡膠(b)和2#改性多孔鋼渣/橡膠復合材料(c)的X射線衍射圖

    Figure  4.  XRD of modified porous steel slag (a), rubber (b), and 2# modified porous steel slag/rubber composite materials (c)

    表  1  改性多孔鋼渣/橡膠復合材料的配方

    Table  1.   Formula of modified porous steel slag/rubber composite materials

    試樣 磷酸/g 鋼渣/g 硅烷KH550/g 炭黑/g 促進劑/g 硫磺/g 硬脂酸/g 氧化鋅/g 橡膠/g
    00# 0 0 0 20 0.8 1.2 0.8 2.2 100
    0# 0 30 0 20 0.8 1.2 0.8 2.2 100
    1# 0.6 30 0.30 20 0.8 1.2 0.8 2.2 100
    2# 1.2 30 0.30 20 0.8 1.2 0.8 2.2 100
    3# 1.8 30 0.30 20 0.8 1.2 0.8 2.2 100
    4# 1.2 30 0.10 20 0.8 1.2 0.8 2.2 100
    5# 1.2 30 0.50 20 0.8 1.2 0.8 2.2 100
    6# 1.2 30 0.30 20 1.1 0.9 0.8 2.2 100
    7# 1.2 30 0.30 20 0.5 1.5 0.8 2.2 100
    8# 1.2 30 0.30 20 0.8 1.2 1.2 1.8 100
    9# 1.2 30 0.30 20 0.8 1.2 0.4 2.6 100
    10# 0.8 20 0.20 30 0.8 1.2 0.8 2.2 100
    11# 1.0 25 0.25 25 0.8 1.2 0.8 2.2 100
    12# 1.4 35 0.35 15 0.8 1.2 0.8 2.2 100
    13# 1.6 40 0.40 10 0.8 1.2 0.8 2.2 100
    下載: 導出CSV

    表  2  磷酸/鋼渣質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響

    Table  2.   Effect of the mass ratio of phosphoric acid/steel slag on the mechanical properties of modified porous steel slag/rubber composite materials

    試樣 磷酸/g 鋼渣/g 拉伸強度/MPa 邵爾A硬度 撕裂強度/(kN·m-1)
    0# 0 30 11.1 63.0 32.9
    1# 0.6 30 16.7 68.4 42.3
    2# 1.2 30 18.4 68.8 44.6
    3# 1.8 30 15.4 67.3 39.4
    下載: 導出CSV

    表  3  不同磷酸/鋼渣質量比改性多孔鋼渣的孔結構

    Table  3.   Pore structure of modified porous steel slag in different mass ratios of phosphoric acid/steel slag

    試樣 比表面積/
    (m2·g-1)
    孔體積/
    (mL·g-1)
    平均孔徑/
    nm
    0# 3.952 0.0232 19.97
    1# 12.754 0.0747 23.75
    2# 15.351 0.0896 25.82
    3# 14.033 0.0483 16.18
    下載: 導出CSV

    表  4  硅烷KH550/多孔鋼渣質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響

    Table  4.   Effect of the mass ratio of silane KH550/porous steel slag on the mechanical properties of modified porous steel slag/rubber composite materials

    試樣 磷酸/g 鋼渣/g 硅烷KH550/g 拉伸強度/MPa 邵爾A硬度 撕裂強度/(kN·m-1)
    00# 0 0 0 14.5 64.8 39.7
    0# 0 30 0 11.1 63.0 32.9
    4# 1.2 30 0.1 14.2 66.7 41.8
    2# 1.2 30 0.3 18.4 68.8 44.6
    5# 1.2 30 0.5 18.6 69.1 44.7
    下載: 導出CSV

    表  5  促進劑/硫磺質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響

    Table  5.   Effect of the mass ratio of accelerator/sulfur on the mechanical properties of modified porous steel slag/rubber composite materials

    試樣 促進劑/g 硫磺/g 拉伸強度/MPa 邵爾A硬度 撕裂強度/(kN·m-1)
    6# 1.1 0.9 10.5 61.6 36.9
    2# 0.8 1.2 18.4 68.8 44.6
    7# 0.5 1.5 14.7 64.3 41.1
    下載: 導出CSV

    表  6  硬脂酸/氧化鋅質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響

    Table  6.   Effect of the mass ratio of stearic acid/zinc oxide on the mechanical properties of modified porous steel slag/rubber composite materials

    試樣 硬脂酸/g 氧化鋅/g 拉伸強度/MPa 邵爾A硬度 撕裂強度/(kN·m-1)
    8# 1.2 1.8 16.6 66.2 42.7
    2# 0.8 2.2 18.4 68.8 44.6
    9# 0.4 2.6 15.9 65.1 42.3
    下載: 導出CSV

    表  7  改性多孔鋼渣/炭黑質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響

    Table  7.   Effect of the mass ratio of modified porous steel slag/carbon black on the mechanical properties of modified porous steel slag/rubber composite materials

    試樣 磷酸/g 鋼渣/g 硅烷KH550/g 炭黑/g 拉伸強度/MPa 邵爾A硬度 撕裂強度/(kN·m-1)
    10# 0.8 20 0.20 30 21.2 71.5 48.1
    11# 1.0 25 0.25 25 19.8 70.6 46.7
    2# 1.2 30 0.30 20 18.4 68.8 44.6
    12# 1.4 35 0.35 15 14.3 63.7 40.3
    13# 1.6 40 0.40 10 8.5 57.9 32.8
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Sun P, Guo Z C. Sintering preparation of porous sound-absorbing materials from steel slag. Trans Nonferrous Met Soc China, 2015, 25(7): 2230 doi: 10.1016/S1003-6326(15)63865-1
    [2] Zhang Y J, Kang L, Liu L C. et al. Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance. Appl Surf Sci, 2015, 331: 399 doi: 10.1016/j.apsusc.2015.01.090
    [3] Xiang L, Xiang Y, Wang Z G, et al. Influence of chemical additives on the formation of super-fine calcium carbonate. Powder Technol, 2002, 126(2): 129 doi: 10.1016/S0032-5910(02)00047-5
    [4] Morel F, Bounor-Legaré V, Espuche E, et al. Surface modification of calcium carbonate nanofillers by fluoro- and alkyl-alkoxysilane: consequences on the morphology, thermal stability and gas barrier properties of polyvinylidene fluoride nanocomposites. Eur Polym J, 2012, 48(5): 919 doi: 10.1016/j.eurpolymj.2012.03.004
    [5] Binici H, Temiz H, Kose M M. The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice. Constr Build Mater, 2007, 21(5): 1122 doi: 10.1016/j.conbuildmat.2005.11.005
    [6] Makela M, Watkins G, Poykio R, et al. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability. J Hazard Mater, 2012, 207-208: 21 doi: 10.1016/j.jhazmat.2011.02.015
    [7] Saria L, Shimaoka T, Miyawaki K. Leaching of heavy metals in acid mine drainage. Waste Manage Res, 2006, 24(2): 134 doi: 10.1177/0734242X06063052
    [8] Navarro M C, Pérez-Sirvent C, Martínez-Sánchez M J, et al. Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor, 2008, 96(2-3): 183 doi: 10.1016/j.gexplo.2007.04.011
    [9] Zhuang P, McBride M B, Xia H P, et al. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ, 2009, 407(5): 1551 doi: 10.1016/j.scitotenv.2008.10.061
    [10] Yang J T, Fan H, Bu Z Y, et al. Montmorillonite reinforced SBR and effect on the vulcanization of rubber. Acta Mater Compos Sin, 2005, 22(2): 38 doi: 10.3321/j.issn:1000-3851.2005.02.008

    楊晉濤, 范宏, 卜志揚, 等. 蒙脫土填充補強丁苯橡膠及對橡膠硫化特性的影響. 復合材料學報, 2005, 22(2): 38 doi: 10.3321/j.issn:1000-3851.2005.02.008
    [11] Raza M A, Westwood A, Brown A, et al. Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composite for thermal interface applications. Carbon, 2011, 49(13): 4269 doi: 10.1016/j.carbon.2011.06.002
    [12] Chen L, Lu L, Wu D J, et al. Slicone rubber/graphite nanosheet electrically conducting nanocomposite with a low percolation threshold. Polym Compos, 2007, 28(4): 493 doi: 10.1002/pc.20323
    [13] Li C X, Liu J, Ren R C. Study on fly ash modification and reinforce-reagent mechanism of rubber. Non-Metallic Mines, 2012, 35(5): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201205017.htm

    李彩霞, 劉健, 任瑞晨. 粉煤灰改性及作橡膠補強填料機理研究. 非金屬礦, 2012, 35(5): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201205017.htm
    [14] Yang Z, Zhang X. Application of a preliminary study on fly ash in natural rubber. Technol Market, 2011, 18(7): 27 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYS201107014.htm

    楊昭, 張馨. 粉煤灰在天然橡膠中的應用初探. 技術與市場, 2011, 18(7): 27 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYS201107014.htm
    [15] Tang Z F, Zhou X L, Lin H T, et al. Study on mechanical properties of cenosphere/caoutchouc composite materials. Non-Metallic Mines, 2008, 31(2): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200802005.htm

    唐忠鋒, 周小柳, 林海濤, 等. 漂珠/天然橡膠復合材料的力學性能研究. 非金屬礦, 2008, 31(2): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200802005.htm
  • 加載中
圖(4) / 表(7)
計量
  • 文章訪問數:  1168
  • HTML全文瀏覽量:  535
  • PDF下載量:  25
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-12-22
  • 刊出日期:  2019-01-01

目錄

    /

    返回文章
    返回