Preparation of modified porous steel slag/rubber composite materials and its properties
-
摘要: 用磷酸、硅烷KH550和鋼渣制備改性多孔鋼渣, 以改性多孔鋼渣取代部分炭黑.利用改性多孔鋼渣、炭黑、橡膠、促進劑、硫磺、硬脂酸和氧化鋅進行復合, 制備一系列改性多孔鋼渣/橡膠復合材料, 研究了磷酸/鋼渣質量比、硅烷KH550/多孔鋼渣質量比、促進劑/硫磺質量比、硬脂酸/氧化鋅質量比和改性多孔鋼渣/炭黑質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響, 并且分析其影響機理.結果表明, 當磷酸用量為1.2 g、鋼渣用量為30 g、硅烷KH550用量為0.3 g、炭黑用量為20 g、促進劑用量為0.8 g、硫磺用量為1.2 g、硬脂酸用量為0.8 g、氧化鋅用量為2.2 g和橡膠用量為100 g時, 改性多孔鋼渣/橡膠復合材料的力學性能較好, 即拉伸強度為18.4 MPa、邵爾A硬度為68.8、撕裂強度為44.6 kN·m-1.磷酸與硅烷KH550可以改善鋼渣的孔結構與表面結構; 適量的促進劑/硫磺質量比與硬脂酸/氧化鋅質量比可以消除硫磺形成的內硫環, 促使橡膠交聯鍵穩定.改性多孔鋼渣與橡膠以物理方式進行復合形成良好的包裹結構.Abstract: High value-added utilization of solid wastes, such as the development of an inexpensive inorganic rubber filler, is one of the important approaches of sustainable development. Phosphoric acid, silane KH550, and steel slag were innovatively used to prepare modified porous steel slag, which partially replaced carbon black in this study. Modified porous steel slag was combined with carbon black, rubber, accelerator, sulfur, stearic acid, and zinc oxide to prepare a series of modified porous steel slag/rubber composite materials. This study investigated the mass ratios of phosphoric acid/steel slag, silane KH550/porous steel slag, accelerator/sulfur, and stearic acid/zinc oxide and the effect of the mass ratio of modified porous steel slag/carbon black on the mechanical properties of the prepared modified porous steel slag/rubber composite materials. At the same time, the influence mechanism was analyzed. The results indicate that the modified porous steel slag/rubber composites (the amounts of phosphoric acid, steel slag, silane KH550, carbon black, accelerator, sulfur, stearic acid, zinc oxide, and rubber are 1.2, 30, 0.3, 20, 0.8, 1.2, 0.8, 2.2, and 100 g, respectively) have good mechanical properties, with the tensile strength of 18.4 MPa, Shore A hardness of 68.8, and tearing strength of 44.6 kN·m-1. Phosphoric acid and silane KH550 can improve the pore and surface structures of steel slag. Appropriate ratios of accelerator/sulfur and stearic acid/zinc oxide can destroy the internal sulfur ring, which stabilizes the cross bond of rubber. Thus, a desirable package structure can be obtained by physically combining modified porous steel slag with rubber.
-
Key words:
- carbon black /
- modified porous steel slag /
- rubber /
- composite materials /
- mechanical property
-
圖 1 不同硅烷KH550/多孔鋼渣質量比改性多孔鋼渣的傅里葉變換紅外光譜.(a)鋼渣;(b)4#改性多孔鋼渣;(c)2#改性多孔鋼渣;(d)5#改性多孔鋼渣
Figure 1. Fourier transform infrared spectroscopy of modified porous steel slag in different mass ratios of silane KH550/porous steel slag: (a) steel slag; (b) 4# modified porous steel slag; (c) 2# modified porous steel slag; (d) 5# modified porous steel slag
圖 2 不同促進劑/硫磺質量比改性多孔鋼渣/橡膠復合材料的掃描電鏡圖. (a)6#改性多孔鋼渣/橡膠復合材料;(b)2#改性多孔鋼渣/橡膠復合材料;(c)7#改性多孔鋼渣/橡膠復合材料
Figure 2. SEM of modified porous steel slag/rubber composite materials in different mass ratios of accelerator/sulfur: (a) 6# modified porous steel slag/rubber composite materials; (b) 2# modified porous steel slag/rubber composite materials; (c) 7# modified porous steel slag/rubber composite materials
圖 3 不同硬脂酸/氧化鋅質量比改性多孔鋼渣/橡膠復合材料的掃描電鏡圖.(a)8#改性多孔鋼渣/橡膠復合材料;(b)2#改性多孔鋼渣/橡膠復合材料;(c)9#改性多孔鋼渣/橡膠復合材料
Figure 3. SEM of modified porous steel slag/rubber composite materials in different mass ratios of stearic acid/zinc oxide: (a) 8# modified porous steel slag/rubber composite materials; (b) 2# modified porous steel slag/rubber composite materials; (c) 9# modified porous steel slag/rubber composite materials
表 1 改性多孔鋼渣/橡膠復合材料的配方
Table 1. Formula of modified porous steel slag/rubber composite materials
試樣 磷酸/g 鋼渣/g 硅烷KH550/g 炭黑/g 促進劑/g 硫磺/g 硬脂酸/g 氧化鋅/g 橡膠/g 00# 0 0 0 20 0.8 1.2 0.8 2.2 100 0# 0 30 0 20 0.8 1.2 0.8 2.2 100 1# 0.6 30 0.30 20 0.8 1.2 0.8 2.2 100 2# 1.2 30 0.30 20 0.8 1.2 0.8 2.2 100 3# 1.8 30 0.30 20 0.8 1.2 0.8 2.2 100 4# 1.2 30 0.10 20 0.8 1.2 0.8 2.2 100 5# 1.2 30 0.50 20 0.8 1.2 0.8 2.2 100 6# 1.2 30 0.30 20 1.1 0.9 0.8 2.2 100 7# 1.2 30 0.30 20 0.5 1.5 0.8 2.2 100 8# 1.2 30 0.30 20 0.8 1.2 1.2 1.8 100 9# 1.2 30 0.30 20 0.8 1.2 0.4 2.6 100 10# 0.8 20 0.20 30 0.8 1.2 0.8 2.2 100 11# 1.0 25 0.25 25 0.8 1.2 0.8 2.2 100 12# 1.4 35 0.35 15 0.8 1.2 0.8 2.2 100 13# 1.6 40 0.40 10 0.8 1.2 0.8 2.2 100 表 2 磷酸/鋼渣質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響
Table 2. Effect of the mass ratio of phosphoric acid/steel slag on the mechanical properties of modified porous steel slag/rubber composite materials
試樣 磷酸/g 鋼渣/g 拉伸強度/MPa 邵爾A硬度 撕裂強度/(kN·m-1) 0# 0 30 11.1 63.0 32.9 1# 0.6 30 16.7 68.4 42.3 2# 1.2 30 18.4 68.8 44.6 3# 1.8 30 15.4 67.3 39.4 表 3 不同磷酸/鋼渣質量比改性多孔鋼渣的孔結構
Table 3. Pore structure of modified porous steel slag in different mass ratios of phosphoric acid/steel slag
試樣 比表面積/
(m2·g-1)孔體積/
(mL·g-1)平均孔徑/
nm0# 3.952 0.0232 19.97 1# 12.754 0.0747 23.75 2# 15.351 0.0896 25.82 3# 14.033 0.0483 16.18 表 4 硅烷KH550/多孔鋼渣質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響
Table 4. Effect of the mass ratio of silane KH550/porous steel slag on the mechanical properties of modified porous steel slag/rubber composite materials
試樣 磷酸/g 鋼渣/g 硅烷KH550/g 拉伸強度/MPa 邵爾A硬度 撕裂強度/(kN·m-1) 00# 0 0 0 14.5 64.8 39.7 0# 0 30 0 11.1 63.0 32.9 4# 1.2 30 0.1 14.2 66.7 41.8 2# 1.2 30 0.3 18.4 68.8 44.6 5# 1.2 30 0.5 18.6 69.1 44.7 表 5 促進劑/硫磺質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響
Table 5. Effect of the mass ratio of accelerator/sulfur on the mechanical properties of modified porous steel slag/rubber composite materials
試樣 促進劑/g 硫磺/g 拉伸強度/MPa 邵爾A硬度 撕裂強度/(kN·m-1) 6# 1.1 0.9 10.5 61.6 36.9 2# 0.8 1.2 18.4 68.8 44.6 7# 0.5 1.5 14.7 64.3 41.1 表 6 硬脂酸/氧化鋅質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響
Table 6. Effect of the mass ratio of stearic acid/zinc oxide on the mechanical properties of modified porous steel slag/rubber composite materials
試樣 硬脂酸/g 氧化鋅/g 拉伸強度/MPa 邵爾A硬度 撕裂強度/(kN·m-1) 8# 1.2 1.8 16.6 66.2 42.7 2# 0.8 2.2 18.4 68.8 44.6 9# 0.4 2.6 15.9 65.1 42.3 表 7 改性多孔鋼渣/炭黑質量比對改性多孔鋼渣/橡膠復合材料力學性能的影響
Table 7. Effect of the mass ratio of modified porous steel slag/carbon black on the mechanical properties of modified porous steel slag/rubber composite materials
試樣 磷酸/g 鋼渣/g 硅烷KH550/g 炭黑/g 拉伸強度/MPa 邵爾A硬度 撕裂強度/(kN·m-1) 10# 0.8 20 0.20 30 21.2 71.5 48.1 11# 1.0 25 0.25 25 19.8 70.6 46.7 2# 1.2 30 0.30 20 18.4 68.8 44.6 12# 1.4 35 0.35 15 14.3 63.7 40.3 13# 1.6 40 0.40 10 8.5 57.9 32.8 259luxu-164 -
參考文獻
[1] Sun P, Guo Z C. Sintering preparation of porous sound-absorbing materials from steel slag. Trans Nonferrous Met Soc China, 2015, 25(7): 2230 doi: 10.1016/S1003-6326(15)63865-1 [2] Zhang Y J, Kang L, Liu L C. et al. Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance. Appl Surf Sci, 2015, 331: 399 doi: 10.1016/j.apsusc.2015.01.090 [3] Xiang L, Xiang Y, Wang Z G, et al. Influence of chemical additives on the formation of super-fine calcium carbonate. Powder Technol, 2002, 126(2): 129 doi: 10.1016/S0032-5910(02)00047-5 [4] Morel F, Bounor-Legaré V, Espuche E, et al. Surface modification of calcium carbonate nanofillers by fluoro- and alkyl-alkoxysilane: consequences on the morphology, thermal stability and gas barrier properties of polyvinylidene fluoride nanocomposites. Eur Polym J, 2012, 48(5): 919 doi: 10.1016/j.eurpolymj.2012.03.004 [5] Binici H, Temiz H, Kose M M. The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice. Constr Build Mater, 2007, 21(5): 1122 doi: 10.1016/j.conbuildmat.2005.11.005 [6] Makela M, Watkins G, Poykio R, et al. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability. J Hazard Mater, 2012, 207-208: 21 doi: 10.1016/j.jhazmat.2011.02.015 [7] Saria L, Shimaoka T, Miyawaki K. Leaching of heavy metals in acid mine drainage. Waste Manage Res, 2006, 24(2): 134 doi: 10.1177/0734242X06063052 [8] Navarro M C, Pérez-Sirvent C, Martínez-Sánchez M J, et al. Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor, 2008, 96(2-3): 183 doi: 10.1016/j.gexplo.2007.04.011 [9] Zhuang P, McBride M B, Xia H P, et al. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ, 2009, 407(5): 1551 doi: 10.1016/j.scitotenv.2008.10.061 [10] Yang J T, Fan H, Bu Z Y, et al. Montmorillonite reinforced SBR and effect on the vulcanization of rubber. Acta Mater Compos Sin, 2005, 22(2): 38 doi: 10.3321/j.issn:1000-3851.2005.02.008楊晉濤, 范宏, 卜志揚, 等. 蒙脫土填充補強丁苯橡膠及對橡膠硫化特性的影響. 復合材料學報, 2005, 22(2): 38 doi: 10.3321/j.issn:1000-3851.2005.02.008 [11] Raza M A, Westwood A, Brown A, et al. Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composite for thermal interface applications. Carbon, 2011, 49(13): 4269 doi: 10.1016/j.carbon.2011.06.002 [12] Chen L, Lu L, Wu D J, et al. Slicone rubber/graphite nanosheet electrically conducting nanocomposite with a low percolation threshold. Polym Compos, 2007, 28(4): 493 doi: 10.1002/pc.20323 [13] Li C X, Liu J, Ren R C. Study on fly ash modification and reinforce-reagent mechanism of rubber. Non-Metallic Mines, 2012, 35(5): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201205017.htm李彩霞, 劉健, 任瑞晨. 粉煤灰改性及作橡膠補強填料機理研究. 非金屬礦, 2012, 35(5): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201205017.htm [14] Yang Z, Zhang X. Application of a preliminary study on fly ash in natural rubber. Technol Market, 2011, 18(7): 27 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYS201107014.htm楊昭, 張馨. 粉煤灰在天然橡膠中的應用初探. 技術與市場, 2011, 18(7): 27 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYS201107014.htm [15] Tang Z F, Zhou X L, Lin H T, et al. Study on mechanical properties of cenosphere/caoutchouc composite materials. Non-Metallic Mines, 2008, 31(2): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200802005.htm唐忠鋒, 周小柳, 林海濤, 等. 漂珠/天然橡膠復合材料的力學性能研究. 非金屬礦, 2008, 31(2): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200802005.htm -