<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

深埋硬巖隧道圍巖參數概率反演方法

吳忠廣 吳順川

吳忠廣, 吳順川. 深埋硬巖隧道圍巖參數概率反演方法[J]. 工程科學學報, 2019, 41(1): 78-87. doi: 10.13374/j.issn2095-9389.2019.01.008
引用本文: 吳忠廣, 吳順川. 深埋硬巖隧道圍巖參數概率反演方法[J]. 工程科學學報, 2019, 41(1): 78-87. doi: 10.13374/j.issn2095-9389.2019.01.008
WU Zhong-guang, WU Shun-chuan. Probabilistic back analysis method for determining surrounding rock parameters of deep hard rock tunnel[J]. Chinese Journal of Engineering, 2019, 41(1): 78-87. doi: 10.13374/j.issn2095-9389.2019.01.008
Citation: WU Zhong-guang, WU Shun-chuan. Probabilistic back analysis method for determining surrounding rock parameters of deep hard rock tunnel[J]. Chinese Journal of Engineering, 2019, 41(1): 78-87. doi: 10.13374/j.issn2095-9389.2019.01.008

深埋硬巖隧道圍巖參數概率反演方法

doi: 10.13374/j.issn2095-9389.2019.01.008
基金項目: 

國家重點研發計劃專項資助項目 2017YFC08053003

國家自然科學基金資助項目 51174020

詳細信息
    通訊作者:

    吳忠廣, E-mail: kinliwu@163.com

  • 中圖分類號: TU452

Probabilistic back analysis method for determining surrounding rock parameters of deep hard rock tunnel

More Information
  • 摘要: 在貝葉斯理論框架下, 提出了一種基于多源數據融合的深埋硬巖隧道圍巖參數概率反演方法.首先, 分析硬巖隧道常用的啟裂-剝落界限本構模型中圍巖單軸抗壓強度、啟裂強度與抗壓強度比及抗拉強度三個參數不確定性來源, 確定其概率統計特征; 其次, 利用粒子群算法優化多輸出支持向量機, 建立反映反演參數與隧道監測數據間非線性映射關系的智能響應面; 最后, 結合貝葉斯分析方法構建概率反演模型, 運用馬爾科夫鏈蒙特卡洛模擬算法實現了圍巖參數的動態更新.將該方法應用到某深埋硬巖隧道中, 利用反演的圍巖參數計算隧道拱頂下沉點、周邊收斂點變化值及開挖損傷區深度, 與監測數據吻合較好.結果表明, 該方法可以實現圍巖多參數快速概率反演, 更新后的參數可用于硬巖隧道施工安全風險評估與結構可靠性設計.

     

  • 圖  1  B-PSO-MSVM計算流程

    Figure  1.  Calculation flowchart of B-PSO-MSVM method

    圖  2  算例模型

    Figure  2.  Example model

    圖  3  拱頂下沉點P0

    Figure  3.  Vault settlement Point P0

    圖  4  周邊收斂點P1

    Figure  4.  Peripheral displacement convergence Point P1

    圖  5  開挖損傷區深度

    Figure  5.  EDZ depths

    圖  6  P0數值模擬與多輸出支持向量機計算值比較圖

    Figure  6.  Comparison of P0 obtained by numerical simulation and MSVM calculation

    圖  7  P1數值模擬與多輸出支持向量機計算值比較圖

    Figure  7.  Comparison of P1 obtained by numerical simulation and MSVM calculation

    圖  8  EDZ數值模擬與多輸出支持向量機計算值比較圖

    Figure  8.  Comparison of EDZ obtained by numerical simulation and MSVM calculation

    圖  9  三個參數軌跡圖

    Figure  9.  Trace plot of three parameters

    圖  10  三個參數柱狀圖

    Figure  10.  Histograms of three parameters

    圖  11  UCS更新后參數值與初始值比較圖

    Figure  11.  Comparison of UCS between the updated value and original value

    圖  12  CI/UCS更新后參數值與初始值比較圖

    Figure  12.  Comparison of CI/UCS between the updated value and original value

    圖  13  T更新后參數值與初始值比較圖

    Figure  13.  Comparison of T between the updated value and original value

    表  1  DISL模型參數取值表

    Table  1.   DISL model input parameters

    參數 峰值參數 殘余參數
    a 0.25 0.75
    s (CI/UCS)1/a 0.001
    m s(UCS/|T|) 6~12
    下載: 導出CSV

    表  2  巖體力學參數

    Table  2.   Rock mass mechanical parameters

    參數 取值
    地質強度指標, GSI 90
    巖石單軸抗壓強度, UCS/MPa logN (110, 20)
    啟裂強度/抗壓強度, CI/UCS N (0.403, 0.022)
    巖石抗拉強度, T/MPa N (-5.7, 1.4)
    殘余m值, mres 8
    巖石彈性模量, E/GPa 19
    泊松比, ν 0.12
    注:N(ε1σ1)指服從均值為ε1,標準差為σ1的正態分布;logN(ε2σ2)指服從均值為ε2,標準差為σ2的對數正態分布.
    下載: 導出CSV

    表  3  訓練樣本集

    Table  3.   Set of training samples

    試驗
    序號
    樣本輸入 樣本輸出
    UCS/
    MPa
    CI/
    UCS
    T/
    MPa
    P0/
    mm
    P1/
    mm
    EDZ/
    m
    1 50 0.3722 -6.54 13.5 13.5 3.808
    2 54 0.414 -3.46 12 12 3.263
    3 58 0.4558 -8.78 15 13.5 2.966
    4 60 0.359 -5.42 9.5 12 2.963
    5 62 0.3986 -2.2 9 12 2.898
    6 66 0.4382 -7.66 8.95 12 2.066
    7 70 0.3458 -4.3 10.5 13.5 2.948
    8 74 0.3854 -9.62 8.5 12 2.052
    9 78 0.425 -6.4 1.35 9.5 0.556
    10 80 0.4646 -3.18 8.8 12 1.929
    11 82 0.37 -8.5 9.5 12 2.027
    12 86 0.4118 -5.14 8.5 12 1.842
    13 90 0.4514 -2.06 7.45 10.5 1.791
    14 94 0.3546 -7.38 12 14 2.252
    15 98 0.3942 -4.02 8.8 12 1.825
    16 100 0.436 -9.34 12 12 1.788
    17 102 0.3414 -5.14 9.5 12 1.827
    18 106 0.381 -2.9 10.5 12 1.787
    19 110 0.4206 -8.22 12 10.5 1.378
    20 114 0.4602 -5 8.55 10.5 1.236
    21 118 0.3678 -1.78 22 11.5 1.423
    22 120 0.4074 -7.1 8.75 10.5 1.774
    23 122 0.447 -3.74 10.5 10.5 1.367
    24 126 0.3502 -9.2 18 12 1.785
    25 130 0.392 -5.98 6.3 10.5 1.375
    26 134 0.4338 -2.62 2 10 0.718
    27 138 0.337 -7.94 15 12 1.399
    28 140 0.3766 -4.86 8.1 12 1.772
    29 142 0.4162 -1.5 7.65 10.5 1.111
    30 146 0.458 -6.82 9.6 10 0.868
    31 150 0.3634 -3.6 12 10.5 1.235
    32 154 0.403 -9.06 15 10.5 1.282
    33 158 0.4426 -5.7 4.35 10 0.675
    34 160 0.348 -2.34 8.55 10.5 0.866
    35 162 0.3898 -7.8 8.95 10.5 1.123
    36 166 0.4294 -4.58 2 9.5 0.674
    37 170 0.469 -9.9 3.5 9 0.556
    下載: 導出CSV

    表  4  參數更新后計算結果表

    Table  4.   Results obtained by updated parameters

    試驗序號 樣本輸出 備注
    P0/mm P1/mm EDZ/m
    1 10 11 1.7 監測值[39]
    2 8.95 12 1.785 數值模擬
    3 14.76 12.82 1.75 多輸出支持向量機計算
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Baecher G B, Christian J T. Reliability and Statistics in Geotechnical Engineering. New York: John Wiley and Sons, Inc, 2003
    [2] Der Kiureghian A, Ditlevsen O. Aleatory or epistemic? Does it matter? Struct Saf, 2009, 31(2): 105 doi: 10.1016/j.strusafe.2008.06.020
    [3] Langford J C, Diederichs M S. Quantifying uncertainty in Hoek-Brown intact strength envelopes. Int J Rock Mech Min Sci, 2015, 74: 91 doi: 10.1016/j.ijrmms.2014.12.008
    [4] Cai M F, He M C, Liu D Y. Rock Mechanics and Engineering. 2nd Ed. Beijing: Science Press, 2013

    蔡美峰, 何滿潮, 劉東燕. 巖石力學與工程. 2版. 北京: 科學出版社, 2013
    [5] Gilbert R B, Tang W H. Model uncertainty in offshore geotechnical reliability// Proceeding of the 27th Offshore Technology Conference. Houston, 1995: 557
    [6] Gilbert R B, Wright S G, Liedtke E. Uncertainty in back analysis of slopes: Kettleman Hills case history. J Geotech Geoenviron Eng, 1998, 124(12): 1167 doi: 10.1061/(ASCE)1090-0241(1998)124:12(1167)
    [7] Zhang L L, Zhang J, Zhang L M, et al. Back analysis of slope failure with Markov chain Monte Carlo simulation. Comput Geotech, 2010, 37(7-8): 905 doi: 10.1016/j.compgeo.2010.07.009
    [8] Zhang L L, Zuo Z B, Ye G L, et al. Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope. Comput Geotech, 2013, 48: 72 doi: 10.1016/j.compgeo.2012.09.011
    [9] Zhang J, Tang W H, Zhang L M. Efficient probabilistic back-analysis of slope stability model parameters. J Geotech Geoenviron Eng, 2010, 136(1): 99 doi: 10.1061/(ASCE)GT.1943-5606.0000205
    [10] Wang L, Hwang J H, Luo Z, et al. Probabilistic back analysis of slope failure——a case study in Taiwan. Comput Geotech, 2013, 51: 12 doi: 10.1016/j.compgeo.2013.01.008
    [11] Li S J, Zhao H B, Ru Z L, et al. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope. Eng Geol, 2016, 203: 178 doi: 10.1016/j.enggeo.2015.11.004
    [12] Miranda T, Dias D, Eclaircy-Caudron S, et al. Back analysis of geomechanical parameters by optimisation of a 3D model of an underground structure. Tunnell Undergr Space Technol, 2011, 26(6): 659 doi: 10.1016/j.tust.2011.05.010
    [13] Miro S, K?nig M, Hartmann D, et al. A probabilistic analysis of subsoil parameters uncertainty impacts on tunnel-induced ground movements with a back-analysis study. Comput Geotech, 2015, 68: 38 doi: 10.1016/j.compgeo.2015.03.012
    [14] Haas C, Einstein H H. Updating the "Decision Aids for Tunneling". J Constr Eng Manage, 2002, 128(1): 40 doi: 10.1061/(ASCE)0733-9364(2002)128:1(40)
    [15] Miranda T, Correia A G, e Sousa L R. Bayesian methodology for updating geomechanical parameters and uncertainty quantification. Int J Rock Mech Min Sci, 2009, 46(7): 1144 doi: 10.1016/j.ijrmms.2009.03.008
    [16] Zhang J, Tang W H, Zhang L M, et al. Characterising geotechnical model uncertainty by hybrid Markov Chain Monte Carlo simulation. Comput Geotech, 2012, 43: 26 doi: 10.1016/j.compgeo.2012.02.002
    [17] Peng M, Li X Y, Li D Q, et al. Slope safety evaluation by integrating multi-source monitoring information. Struct Saf, 2014, 49: 65 doi: 10.1016/j.strusafe.2013.08.007
    [18] Feng X D, Jimenez R. Bayesian prediction of elastic modulus of intact rocks using their uniaxial compressive strength. Eng Geol, 2014, 173: 32 doi: 10.1016/j.enggeo.2014.02.005
    [19] Wang Y, Cao Z J. Probabilistic characterization of Young's modulus of soil using equivalent samples. Eng Geol, 2013, 159: 106 doi: 10.1016/j.enggeo.2013.03.017
    [20] Cao Z J, Wang Y, Li D Q. Quantification of prior knowledge in geotechnical site characterization. Eng Geol, 2016, 203: 107 doi: 10.1016/j.enggeo.2015.08.018
    [21] Wang Y, Aladejare A E. Bayesian characterization of correlation between uniaxial compressive strength and Young's modulus of rock. Int J Rock Mech Min Sci, 2016, 85: 10 doi: 10.1016/j.ijrmms.2016.02.010
    [22] Contreras L F, Brown E T, Ruest M. Bayesian data analysis to quantify the uncertainty of intact rock strength. J Rock Mech Geotech Eng, 2018, 10(1): 11 doi: 10.1016/j.jrmge.2017.07.008
    [23] Li D Q, Zheng D, Cao Z J, et al. Response surface methods for slope reliability analysis: Review and comparison. Eng Geol, 2016, 203: 3 doi: 10.1016/j.enggeo.2015.09.003
    [24] Lv Q, Sun H Y, Low B K. Reliability analysis of ground-support interaction in circular tunnels using the response surface method. Int J Rock Mech Min Sci, 2011, 48(8): 1329 doi: 10.1016/j.ijrmms.2011.09.020
    [25] Zhao H B, Ru Z L, Chang X, et al. Reliability analysis of tunnel using least square support vector machine. Tunnell Undergr Space Technol, 2014, 41: 14 doi: 10.1016/j.tust.2013.11.004
    [26] Lv Q, Chan C L, Low B K. Probabilistic evaluation of ground-support interaction for deep rock excavation using artificial neural network and uniform design. Tunnell Undergr Space Technol, 2012, 32: 1 doi: 10.1016/j.tust.2012.04.014
    [27] Gomes H M, Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis. Struct Saf, 2004, 26(1): 49 doi: 10.1016/S0167-4730(03)00022-5
    [28] Li X, Li X B, Su Y H. A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment. Struct Saf, 2016, 61: 22 doi: 10.1016/j.strusafe.2016.03.001
    [29] Lv Q, Xiao Z P, Ji J, et al. Moving least squares method for reliability assessment of rock tunnel excavation considering ground-support interaction. Comput Geotech, 2017, 84: 88 doi: 10.1016/j.compgeo.2016.11.019
    [30] Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines. Adv in Neural Inf Process Syst, 1996, 28(7): 779
    [31] Hurtado J E. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory. Struct Saf, 2004, 26(3): 271 doi: 10.1016/j.strusafe.2003.05.002
    [32] Tuia D, Verrelst J, Alonso L, et al. Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci Remote Sens Lett, 2011, 8(4): 804 doi: 10.1109/LGRS.2011.2109934
    [33] Zheng D J, Cheng L, Bao T F, et al. Integrated parameter inversion analysis method of a CFRD based on multi-output support vector machines and the clonal selection algorithm. Comput Geotech, 2013, 47: 68 doi: 10.1016/j.compgeo.2012.07.006
    [34] Li S J, Zhao H B, Ru Z L, et al. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope. Eng Geol, 2016, 203: 178 doi: 10.1016/j.enggeo.2015.11.004
    [35] Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of ICNN'95 International Conference on Neural Networks. Perth, 1995: 1942
    [36] Feng X T, Zhou H, Li S J, et al. System of intelligent evaluation and prediction in space-time for safety of rock engineering under hazardous environment. Chin J Rock Mech Eng, 2008, 27(9): 1741 doi: 10.3321/j.issn:1000-6915.2008.09.002

    馮夏庭, 周輝, 李邵軍, 等. 復雜條件下巖石工程安全性的智能分析評估和時空預測系統. 巖石力學與工程學報, 2008, 27(9): 1741 doi: 10.3321/j.issn:1000-6915.2008.09.002
    [37] Diederichs M S. The 2003 Canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Can Geotech J, 2007, 44(9): 1082 doi: 10.1139/T07-033
    [38] Hoek E, Carranza-Torres C T, Corkum B, et al. Hoek-Brown failure criterion - 2002 edition//Proceedings of NARMS-Tac Conference. Toronto, 2002: 267
    [39] Perras M A, Diederichs M S. Predicting excavation damage zone depths in brittle rocks. Int J Rock Mech Geotech Eng, 2016, 8(1): 60 doi: 10.1016/j.jrmge.2015.11.004
    [40] Dammyr ?. Prediction of brittle failure for TBM tunnels in anisotropic rock: a case study from Northern Norway. Rock Mech Rock Eng, 2016, 49(6): 2131 doi: 10.1007/s00603-015-0910-z
    [41] Langford J C, Diederichs M S. Reliable support design for excavations in brittle rock using a global response surface method. Rock Mech Rock Eng, 2015, 48(2): 669 doi: 10.1007/s00603-014-0567-z
    [42] Ghazvinian E, Perras M A, Diederichs M S, et al. The effect of anisotropy on crack damage thresholds in brittle rocks//Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium. San Francisco, 2013: 503
    [43] Martin C D, Kaiser P K, McCreath D R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can Geotech J, 1999, 36(1): 136 doi: 10.1139/t98-072
    [44] Griffith A. The theory of rupture//Proceedings of the 1st International Congress on Applied Mechanics. Delft, 1924: 55
    [45] Murrell S A F. A criterion for brittle fracture of rocks and concrete under triaxial stress and the effect of pore pressure on the criterion//Proceedings of the 5th Rock Mechanics Symposium. Oxford, 1963: 563
    [46] Cai M. Practical estimates of tensile strength and Hoek-Brown strength parameter mi of brittle rocks. Rock Mech Rock Eng, 2010, 43(2): 167 doi: 10.1007/s00603-009-0053-1
    [47] Perras M A, Diederichs M S. A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng, 2014, 32(2): 525 doi: 10.1007/s10706-014-9732-0
    [48] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equations of state calculations by fast computing machines. J Chem Phys, 1953, 21(6): 1087 doi: 10.1063/1.1699114
    [49] Hastings W K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57(1): 97 doi: 10.1093/biomet/57.1.97
    [50] Yu S W. Case Analysis and Application of MATLAB Optimization Algorithm. Beijing: Tsinghua University Press, 2014

    余勝威. MATLAB優化算法案例分析與應用. 北京: 清華大學出版社, 2014
    [51] Wu C, Zhang P. Analysis of numerical simulation methods for excavation failure zone of deep underground opening in hard rocks with high geostress. Hydrogeol Eng Geol, 2012, 39(6): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201206010.htm

    吳成, 張平. 高地應力硬巖洞室開挖破壞區數值模擬方法探討. 水文地質工程地質, 2012, 39(6): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201206010.htm
    [52] Li X, Li X B, Su Y H. A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment. Struct Saf, 2016, 61: 22 doi: 10.1016/j.strusafe.2016.03.001
  • 加載中
圖(13) / 表(4)
計量
  • 文章訪問數:  961
  • HTML全文瀏覽量:  674
  • PDF下載量:  31
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-05-29
  • 刊出日期:  2019-01-01

目錄

    /

    返回文章
    返回