Probabilistic back analysis method for determining surrounding rock parameters of deep hard rock tunnel
-
摘要: 在貝葉斯理論框架下, 提出了一種基于多源數據融合的深埋硬巖隧道圍巖參數概率反演方法.首先, 分析硬巖隧道常用的啟裂-剝落界限本構模型中圍巖單軸抗壓強度、啟裂強度與抗壓強度比及抗拉強度三個參數不確定性來源, 確定其概率統計特征; 其次, 利用粒子群算法優化多輸出支持向量機, 建立反映反演參數與隧道監測數據間非線性映射關系的智能響應面; 最后, 結合貝葉斯分析方法構建概率反演模型, 運用馬爾科夫鏈蒙特卡洛模擬算法實現了圍巖參數的動態更新.將該方法應用到某深埋硬巖隧道中, 利用反演的圍巖參數計算隧道拱頂下沉點、周邊收斂點變化值及開挖損傷區深度, 與監測數據吻合較好.結果表明, 該方法可以實現圍巖多參數快速概率反演, 更新后的參數可用于硬巖隧道施工安全風險評估與結構可靠性設計.Abstract: A large number of tunnel projects are being constructed or will be constructed in the mountainous areas of western China. However, they are several safety challenges in the construction of deep hard rock tunnels because of the complex topographic and geological conditions, strong geological tectonic activities, large burial depth, and high in situ stress level. Uncertainty of tunnel wall parameters is one of main factors that contribute to tunnel construction risk. The traditional deterministic back analysis method cannot reflect the uncertainty characteristics of tunnel wall parameters; therefore, within the framework of Bayesian theory, a probabilistic back analysis method based on integrating multi-source monitoring information was proposed for determining the surrounding rock parameters of deep hard rock tunnel. First, the uncertainty sources of three parameters——uniaxial compressive strength (UCS), crack initiation stress to UCS ratio, and tensile strength for the widely used damage initiation and spalling limit approach——were analyzed, and their probabilistic statistical characteristics were determined. Second, a multi-output support vector machine (MSVM) was optimized by particle swarm optimization (PSO) algorithm, and an intelligent response surface model was established to reflect the nonlinear mapping relationship between back-analyzed parameters and field monitoring data. Last, by combination with the Bayesian (B) analysis method, the B-PSO-MSVM model was established, and surrounding rock parameters were dynamically updated by applying the Markov Chain Monte Carlo simulation algorithm. The method was applied to a deep hard rock tunnel, and parameters from probabilistic back analysis were utilized to calculate the point change of the tunnel vault settlement and peripheral displacement convergence as well as the depth of excavation damage zones, and the results agreed well with the actual monitoring data. It is shown that this method can be used to back analyze multi parameters of surrounding rock quickly and probabilistically, and parameters updated can be applied for risk assessment in construction safety and structural reliability design for the hard rock tunnel.
-
表 1 DISL模型參數取值表
Table 1. DISL model input parameters
參數 峰值參數 殘余參數 a 0.25 0.75 s (CI/UCS)1/a 0.001 m s(UCS/|T|) 6~12 表 2 巖體力學參數
Table 2. Rock mass mechanical parameters
參數 取值 地質強度指標, GSI 90 巖石單軸抗壓強度, UCS/MPa logN (110, 20) 啟裂強度/抗壓強度, CI/UCS N (0.403, 0.022) 巖石抗拉強度, T/MPa N (-5.7, 1.4) 殘余m值, mres 8 巖石彈性模量, E/GPa 19 泊松比, ν 0.12 注:N(ε1,σ1)指服從均值為ε1,標準差為σ1的正態分布;logN(ε2,σ2)指服從均值為ε2,標準差為σ2的對數正態分布. 表 3 訓練樣本集
Table 3. Set of training samples
試驗
序號樣本輸入 樣本輸出 UCS/
MPaCI/
UCST/
MPaP0/
mmP1/
mmEDZ/
m1 50 0.3722 -6.54 13.5 13.5 3.808 2 54 0.414 -3.46 12 12 3.263 3 58 0.4558 -8.78 15 13.5 2.966 4 60 0.359 -5.42 9.5 12 2.963 5 62 0.3986 -2.2 9 12 2.898 6 66 0.4382 -7.66 8.95 12 2.066 7 70 0.3458 -4.3 10.5 13.5 2.948 8 74 0.3854 -9.62 8.5 12 2.052 9 78 0.425 -6.4 1.35 9.5 0.556 10 80 0.4646 -3.18 8.8 12 1.929 11 82 0.37 -8.5 9.5 12 2.027 12 86 0.4118 -5.14 8.5 12 1.842 13 90 0.4514 -2.06 7.45 10.5 1.791 14 94 0.3546 -7.38 12 14 2.252 15 98 0.3942 -4.02 8.8 12 1.825 16 100 0.436 -9.34 12 12 1.788 17 102 0.3414 -5.14 9.5 12 1.827 18 106 0.381 -2.9 10.5 12 1.787 19 110 0.4206 -8.22 12 10.5 1.378 20 114 0.4602 -5 8.55 10.5 1.236 21 118 0.3678 -1.78 22 11.5 1.423 22 120 0.4074 -7.1 8.75 10.5 1.774 23 122 0.447 -3.74 10.5 10.5 1.367 24 126 0.3502 -9.2 18 12 1.785 25 130 0.392 -5.98 6.3 10.5 1.375 26 134 0.4338 -2.62 2 10 0.718 27 138 0.337 -7.94 15 12 1.399 28 140 0.3766 -4.86 8.1 12 1.772 29 142 0.4162 -1.5 7.65 10.5 1.111 30 146 0.458 -6.82 9.6 10 0.868 31 150 0.3634 -3.6 12 10.5 1.235 32 154 0.403 -9.06 15 10.5 1.282 33 158 0.4426 -5.7 4.35 10 0.675 34 160 0.348 -2.34 8.55 10.5 0.866 35 162 0.3898 -7.8 8.95 10.5 1.123 36 166 0.4294 -4.58 2 9.5 0.674 37 170 0.469 -9.9 3.5 9 0.556 表 4 參數更新后計算結果表
Table 4. Results obtained by updated parameters
試驗序號 樣本輸出 備注 P0/mm P1/mm EDZ/m 1 10 11 1.7 監測值[39] 2 8.95 12 1.785 數值模擬 3 14.76 12.82 1.75 多輸出支持向量機計算 259luxu-164 -
參考文獻
[1] Baecher G B, Christian J T. Reliability and Statistics in Geotechnical Engineering. New York: John Wiley and Sons, Inc, 2003 [2] Der Kiureghian A, Ditlevsen O. Aleatory or epistemic? Does it matter? Struct Saf, 2009, 31(2): 105 doi: 10.1016/j.strusafe.2008.06.020 [3] Langford J C, Diederichs M S. Quantifying uncertainty in Hoek-Brown intact strength envelopes. Int J Rock Mech Min Sci, 2015, 74: 91 doi: 10.1016/j.ijrmms.2014.12.008 [4] Cai M F, He M C, Liu D Y. Rock Mechanics and Engineering. 2nd Ed. Beijing: Science Press, 2013蔡美峰, 何滿潮, 劉東燕. 巖石力學與工程. 2版. 北京: 科學出版社, 2013 [5] Gilbert R B, Tang W H. Model uncertainty in offshore geotechnical reliability// Proceeding of the 27th Offshore Technology Conference. Houston, 1995: 557 [6] Gilbert R B, Wright S G, Liedtke E. Uncertainty in back analysis of slopes: Kettleman Hills case history. J Geotech Geoenviron Eng, 1998, 124(12): 1167 doi: 10.1061/(ASCE)1090-0241(1998)124:12(1167) [7] Zhang L L, Zhang J, Zhang L M, et al. Back analysis of slope failure with Markov chain Monte Carlo simulation. Comput Geotech, 2010, 37(7-8): 905 doi: 10.1016/j.compgeo.2010.07.009 [8] Zhang L L, Zuo Z B, Ye G L, et al. Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope. Comput Geotech, 2013, 48: 72 doi: 10.1016/j.compgeo.2012.09.011 [9] Zhang J, Tang W H, Zhang L M. Efficient probabilistic back-analysis of slope stability model parameters. J Geotech Geoenviron Eng, 2010, 136(1): 99 doi: 10.1061/(ASCE)GT.1943-5606.0000205 [10] Wang L, Hwang J H, Luo Z, et al. Probabilistic back analysis of slope failure——a case study in Taiwan. Comput Geotech, 2013, 51: 12 doi: 10.1016/j.compgeo.2013.01.008 [11] Li S J, Zhao H B, Ru Z L, et al. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope. Eng Geol, 2016, 203: 178 doi: 10.1016/j.enggeo.2015.11.004 [12] Miranda T, Dias D, Eclaircy-Caudron S, et al. Back analysis of geomechanical parameters by optimisation of a 3D model of an underground structure. Tunnell Undergr Space Technol, 2011, 26(6): 659 doi: 10.1016/j.tust.2011.05.010 [13] Miro S, K?nig M, Hartmann D, et al. A probabilistic analysis of subsoil parameters uncertainty impacts on tunnel-induced ground movements with a back-analysis study. Comput Geotech, 2015, 68: 38 doi: 10.1016/j.compgeo.2015.03.012 [14] Haas C, Einstein H H. Updating the "Decision Aids for Tunneling". J Constr Eng Manage, 2002, 128(1): 40 doi: 10.1061/(ASCE)0733-9364(2002)128:1(40) [15] Miranda T, Correia A G, e Sousa L R. Bayesian methodology for updating geomechanical parameters and uncertainty quantification. Int J Rock Mech Min Sci, 2009, 46(7): 1144 doi: 10.1016/j.ijrmms.2009.03.008 [16] Zhang J, Tang W H, Zhang L M, et al. Characterising geotechnical model uncertainty by hybrid Markov Chain Monte Carlo simulation. Comput Geotech, 2012, 43: 26 doi: 10.1016/j.compgeo.2012.02.002 [17] Peng M, Li X Y, Li D Q, et al. Slope safety evaluation by integrating multi-source monitoring information. Struct Saf, 2014, 49: 65 doi: 10.1016/j.strusafe.2013.08.007 [18] Feng X D, Jimenez R. Bayesian prediction of elastic modulus of intact rocks using their uniaxial compressive strength. Eng Geol, 2014, 173: 32 doi: 10.1016/j.enggeo.2014.02.005 [19] Wang Y, Cao Z J. Probabilistic characterization of Young's modulus of soil using equivalent samples. Eng Geol, 2013, 159: 106 doi: 10.1016/j.enggeo.2013.03.017 [20] Cao Z J, Wang Y, Li D Q. Quantification of prior knowledge in geotechnical site characterization. Eng Geol, 2016, 203: 107 doi: 10.1016/j.enggeo.2015.08.018 [21] Wang Y, Aladejare A E. Bayesian characterization of correlation between uniaxial compressive strength and Young's modulus of rock. Int J Rock Mech Min Sci, 2016, 85: 10 doi: 10.1016/j.ijrmms.2016.02.010 [22] Contreras L F, Brown E T, Ruest M. Bayesian data analysis to quantify the uncertainty of intact rock strength. J Rock Mech Geotech Eng, 2018, 10(1): 11 doi: 10.1016/j.jrmge.2017.07.008 [23] Li D Q, Zheng D, Cao Z J, et al. Response surface methods for slope reliability analysis: Review and comparison. Eng Geol, 2016, 203: 3 doi: 10.1016/j.enggeo.2015.09.003 [24] Lv Q, Sun H Y, Low B K. Reliability analysis of ground-support interaction in circular tunnels using the response surface method. Int J Rock Mech Min Sci, 2011, 48(8): 1329 doi: 10.1016/j.ijrmms.2011.09.020 [25] Zhao H B, Ru Z L, Chang X, et al. Reliability analysis of tunnel using least square support vector machine. Tunnell Undergr Space Technol, 2014, 41: 14 doi: 10.1016/j.tust.2013.11.004 [26] Lv Q, Chan C L, Low B K. Probabilistic evaluation of ground-support interaction for deep rock excavation using artificial neural network and uniform design. Tunnell Undergr Space Technol, 2012, 32: 1 doi: 10.1016/j.tust.2012.04.014 [27] Gomes H M, Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis. Struct Saf, 2004, 26(1): 49 doi: 10.1016/S0167-4730(03)00022-5 [28] Li X, Li X B, Su Y H. A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment. Struct Saf, 2016, 61: 22 doi: 10.1016/j.strusafe.2016.03.001 [29] Lv Q, Xiao Z P, Ji J, et al. Moving least squares method for reliability assessment of rock tunnel excavation considering ground-support interaction. Comput Geotech, 2017, 84: 88 doi: 10.1016/j.compgeo.2016.11.019 [30] Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines. Adv in Neural Inf Process Syst, 1996, 28(7): 779 [31] Hurtado J E. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory. Struct Saf, 2004, 26(3): 271 doi: 10.1016/j.strusafe.2003.05.002 [32] Tuia D, Verrelst J, Alonso L, et al. Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci Remote Sens Lett, 2011, 8(4): 804 doi: 10.1109/LGRS.2011.2109934 [33] Zheng D J, Cheng L, Bao T F, et al. Integrated parameter inversion analysis method of a CFRD based on multi-output support vector machines and the clonal selection algorithm. Comput Geotech, 2013, 47: 68 doi: 10.1016/j.compgeo.2012.07.006 [34] Li S J, Zhao H B, Ru Z L, et al. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope. Eng Geol, 2016, 203: 178 doi: 10.1016/j.enggeo.2015.11.004 [35] Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of ICNN'95 International Conference on Neural Networks. Perth, 1995: 1942 [36] Feng X T, Zhou H, Li S J, et al. System of intelligent evaluation and prediction in space-time for safety of rock engineering under hazardous environment. Chin J Rock Mech Eng, 2008, 27(9): 1741 doi: 10.3321/j.issn:1000-6915.2008.09.002馮夏庭, 周輝, 李邵軍, 等. 復雜條件下巖石工程安全性的智能分析評估和時空預測系統. 巖石力學與工程學報, 2008, 27(9): 1741 doi: 10.3321/j.issn:1000-6915.2008.09.002 [37] Diederichs M S. The 2003 Canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Can Geotech J, 2007, 44(9): 1082 doi: 10.1139/T07-033 [38] Hoek E, Carranza-Torres C T, Corkum B, et al. Hoek-Brown failure criterion - 2002 edition//Proceedings of NARMS-Tac Conference. Toronto, 2002: 267 [39] Perras M A, Diederichs M S. Predicting excavation damage zone depths in brittle rocks. Int J Rock Mech Geotech Eng, 2016, 8(1): 60 doi: 10.1016/j.jrmge.2015.11.004 [40] Dammyr ?. Prediction of brittle failure for TBM tunnels in anisotropic rock: a case study from Northern Norway. Rock Mech Rock Eng, 2016, 49(6): 2131 doi: 10.1007/s00603-015-0910-z [41] Langford J C, Diederichs M S. Reliable support design for excavations in brittle rock using a global response surface method. Rock Mech Rock Eng, 2015, 48(2): 669 doi: 10.1007/s00603-014-0567-z [42] Ghazvinian E, Perras M A, Diederichs M S, et al. The effect of anisotropy on crack damage thresholds in brittle rocks//Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium. San Francisco, 2013: 503 [43] Martin C D, Kaiser P K, McCreath D R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can Geotech J, 1999, 36(1): 136 doi: 10.1139/t98-072 [44] Griffith A. The theory of rupture//Proceedings of the 1st International Congress on Applied Mechanics. Delft, 1924: 55 [45] Murrell S A F. A criterion for brittle fracture of rocks and concrete under triaxial stress and the effect of pore pressure on the criterion//Proceedings of the 5th Rock Mechanics Symposium. Oxford, 1963: 563 [46] Cai M. Practical estimates of tensile strength and Hoek-Brown strength parameter mi of brittle rocks. Rock Mech Rock Eng, 2010, 43(2): 167 doi: 10.1007/s00603-009-0053-1 [47] Perras M A, Diederichs M S. A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng, 2014, 32(2): 525 doi: 10.1007/s10706-014-9732-0 [48] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equations of state calculations by fast computing machines. J Chem Phys, 1953, 21(6): 1087 doi: 10.1063/1.1699114 [49] Hastings W K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57(1): 97 doi: 10.1093/biomet/57.1.97 [50] Yu S W. Case Analysis and Application of MATLAB Optimization Algorithm. Beijing: Tsinghua University Press, 2014余勝威. MATLAB優化算法案例分析與應用. 北京: 清華大學出版社, 2014 [51] Wu C, Zhang P. Analysis of numerical simulation methods for excavation failure zone of deep underground opening in hard rocks with high geostress. Hydrogeol Eng Geol, 2012, 39(6): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201206010.htm吳成, 張平. 高地應力硬巖洞室開挖破壞區數值模擬方法探討. 水文地質工程地質, 2012, 39(6): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201206010.htm [52] Li X, Li X B, Su Y H. A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment. Struct Saf, 2016, 61: 22 doi: 10.1016/j.strusafe.2016.03.001 -