<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種基于魯棒隨機向量函數鏈接網絡的磨礦粒度集成建模方法

李德鵬 代偉 趙大勇 黃罡 馬小平

李德鵬, 代偉, 趙大勇, 黃罡, 馬小平. 一種基于魯棒隨機向量函數鏈接網絡的磨礦粒度集成建模方法[J]. 工程科學學報, 2019, 41(1): 67-77. doi: 10.13374/j.issn2095-9389.2019.01.007
引用本文: 李德鵬, 代偉, 趙大勇, 黃罡, 馬小平. 一種基于魯棒隨機向量函數鏈接網絡的磨礦粒度集成建模方法[J]. 工程科學學報, 2019, 41(1): 67-77. doi: 10.13374/j.issn2095-9389.2019.01.007
LI De-peng, DAI Wei, ZHAO Da-yong, HUANG Gang, MA Xiao-ping. Grinding process particle size modeling method using robust RVFLN-based ensemble learning[J]. Chinese Journal of Engineering, 2019, 41(1): 67-77. doi: 10.13374/j.issn2095-9389.2019.01.007
Citation: LI De-peng, DAI Wei, ZHAO Da-yong, HUANG Gang, MA Xiao-ping. Grinding process particle size modeling method using robust RVFLN-based ensemble learning[J]. Chinese Journal of Engineering, 2019, 41(1): 67-77. doi: 10.13374/j.issn2095-9389.2019.01.007

一種基于魯棒隨機向量函數鏈接網絡的磨礦粒度集成建模方法

doi: 10.13374/j.issn2095-9389.2019.01.007
基金項目: 

國家自然科學基金青年資助項目 61603393

國家自然科學基金青年資助項目 61741318

江蘇省自然科學基金青年基金資助項目 BK20160275

中國博士后科學基金資助項目 2015M581885

中國博士后科學基金資助項目 2018T110571

流程工業綜合自動化國家重點實驗室開放課題資助項目 PAL-N201706

江蘇省研究生科研與實踐創新計劃資助項目 SJCX17_0524

詳細信息
    通訊作者:

    代偉, E-mail: weidai@cumt.edu.cn

  • 中圖分類號: TP18

Grinding process particle size modeling method using robust RVFLN-based ensemble learning

More Information
  • 摘要: 作為磨礦過程的主要生產質量指標, 磨礦粒度是實現磨礦過程閉環優化控制的關鍵.將磨礦粒度控制在一定范圍內能夠提高選別作業的精礦品位和有用礦物的回收率, 并減少有用礦物的金屬流失.由于經濟和技術上的限制, 磨礦粒度的實時測量難以實現.因此, 磨礦粒度的在線估計顯得尤為重要.然而, 目前我國所處理的鐵礦石大多數為性質不穩定的赤鐵礦, 其礦漿顆粒存在磁團聚現象, 所采集的數據存在大量異常值, 使得利用數據建立的磨礦粒度模型存在較大誤差.同時, 傳統前饋神經網絡在磨礦粒度數據建模過程中存在收斂速度慢、易于陷入局部最小值等缺點, 且單一模型泛化性能較差, 現有的集成學習在異常值干擾下性能嚴重下降.因此, 本文在改進的隨機向量函數鏈接網絡(random vector functional link networks, RVFLN)的基礎上, 將Bagging算法與自適應加權數據融合技術相結合, 提出一種基于魯棒隨機向量函數鏈接網絡的集成建模方法, 用于磨礦粒度集成建模.所提方法首先通過基準回歸問題進行了實驗研究, 然后采用磨礦工業實際數據進行驗證, 表明其有效性.

     

  • 圖  1  磨礦過程工藝流程

    α1—球磨機給礦量,t·h-1α2—球磨機入口給水量,m3·h-1α3—螺旋分級機溢流質量分數;c1—球磨機電流,A;c2—螺旋分級機電流,A;T—檢測儀;W—質量;F—流量;C—電流;D—密度

    Figure  1.  Flow diagram of grinding process

    圖  2  批次磨礦試驗下的磨礦速率與磨礦濃度關系

    Figure  2.  Relationship between grinding rate and mill density based on batch grinding experiment

    圖  3  分級機溢流質量分數與磨礦粒度的關系

    Figure  3.  Relationship between classifier overflow concentration and particle size

    圖  4  魯棒集成學習策略的結構圖

    Figure  4.  Structural diagram of ensemble learning strategy

    圖  5  魯棒隨機向量函數鏈接網絡的結構圖

    Figure  5.  Structural diagram of robust RVFLN

    圖  6  ξ=20%時函數近似比較試驗. (a) 直接平均隨機向量函數鏈接網絡集成;(b) 數據融合隨機向量函數鏈接網絡集成;(c) 數據融合魯棒隨機向量函數鏈接網絡集成

    Figure  6.  Comparison experiments of function approximation at ξ=20%: (a) RVFLN-based direct average ensemble learning; (b) RVFLN-based data fusion ensemble learning; (c) robust RVFLN-based data fusion ensemble learning

    圖  7  基準回歸比較試驗. (a) combined cycle power plant;(b) concrete;(c) wine

    Figure  7.  Comparison experiments of benchmark regression: (a) combined cycle power plant; (b) concrete; (c) wine

    圖  8  ξ=30%時磨礦粒度估計.(a) 直接平均隨機向量函數鏈接網絡集成;(b) 數據融合隨機向量函數鏈接網絡集成;(c) 數據融合魯棒隨機向量函數鏈接網絡集成

    Figure  8.  Particle size estimation of grinding process at ξ=30%: (a) RVFLN-based direct average ensemble learning; (b) RVFLN-based data fusion ensemble learning; (c) robust RVFLN-based data fusion ensemble learning

    表  1  函數近似集成建模性能比較

    Table  1.   Performance comparison of ensemble learning for function approximation

    數據集 集成建模方法 模型參數, L 模型參數, λ mean, t/s
    異常值水平0 異常值水平10% 異常值水平20% 異常值水平30%
    直接平均隨機向量函數鏈接網絡集成 500 20 8.2×10-4, 0.143 0.008, 0.138 0.011, 0.156 0.013, 0.147
    非線性復合函數 數據融合隨機向量函數鏈接網絡集成 500 20 8.1×10-4, 0.143 0.007, 0.140 0.010, 0.145 0.012, 0.144
    數據融合魯棒隨機向量函數鏈接網絡集成 500 50 8.9×10-4, 0.408 0.003, 0.409 0.005, 0.411 0.008, 0.419
    下載: 導出CSV

    表  2  磨礦粒度集成建模性能比較

    Table  2.   Performance comparison of ensemble learning for particle size of grinding process

    數據集 集成建模方法 模型參數, L 模型參數, λ mean, t/s
    異常值水平0 異常值水平10% 異常值水平20% 異常值水平30%
    直接平均隨機向量函數鏈接網絡集成 50 1 0.095, 0.063 0.183, 0.063 0.212, 0.062 0.231, 0.063
    實際工業磨礦過程 數據融合隨機向量函數鏈接網絡集成 50 1 0.086, 0.063 0.168, 0.062 0.201, 0.623 0.224, 0.063
    數據融合魯棒隨機向量函數鏈接網絡集成 50 1 0.009, 0.118 0.035, 0.113 0.072, 0.120 0.106, 0.119
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Chen X S, Li Q, Fei S M. Supervisory expert control for ball mill grinding circuits. Expert Syst Appl, 2008, 34(3): 1877 doi: 10.1016/j.eswa.2007.02.013
    [2] Zhou P, Dai W, Chai T Y. Multivariable disturbance observer based advanced feedback control design and its application to a grinding circuit. IEEE Trans Control Syst Technol, 2014, 22(4): 1474 doi: 10.1109/TCST.2013.2283239
    [3] Wang X L, Gui W H, Yang C H, et al. Wet grindability of an industrial ore and its breakage parameters estimation using population balances. Int J Miner Process, 2011, 98(1-2): 113 doi: 10.1016/j.minpro.2010.11.008
    [4] Meyer E J, Craig I K, The development of dynamic models for a dense medium separation circuit in coal beneficiation, Miner Eng, 2010, 23(10): 791 doi: 10.1016/j.mineng.2010.05.020
    [5] Sun Z, Wang H G, Zhang Z K. Soft sensing of overflow particle size distributions in hydrocyclones using a combined method. Tsinghua Sci Technol, 2008, 13(1): 47 doi: 10.1016/S1007-0214(08)70008-7
    [6] Wang X H, Gui W H, Wang Y L, et al. Prediction modeling for particle size of grinding circuit of mixture kernels SVM. Comput Eng Appl, 2010, 46(12): 207 doi: 10.3778/j.issn.1002-8331.2010.12.062

    王新華, 桂衛華, 王雅琳, 等. 混合核函數支持向量機的磨礦粒度預測模型. 計算機工程與應用, 2010, 46(12): 207 doi: 10.3778/j.issn.1002-8331.2010.12.062
    [7] Qiao J H, Chai T Y. Soft measurement model and its application in raw meal calcination process. J Process Control, 2012, 22(1): 344 doi: 10.1016/j.jprocont.2011.08.005
    [8] Igelnik B, Pao Y H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans Neural Netw, 1995, 6(6): 1320 doi: 10.1109/72.471375
    [9] Huang G B, Chen Y Q, Babri H A. Classification ability of single hidden layer feedforward neural networks. IEEE Trans Neural Netw, 2000, 11(3): 799 doi: 10.1109/72.846750
    [10] Zhang S Y, Bao Y P, Zhang C J, et al. Prediction model of aluminum consumption with BP neural networks in IF steel production. Chin J Eng, 2017, 39(4): 511 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704005.htm

    張思源, 包燕平, 張超杰, 等. BP神經網絡IF鋼鋁耗的預測模型. 工程科學學報, 2017, 39(4): 511 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704005.htm
    [11] Pao Y H, Phillips S M, Sobajic D J. Neural-net computing and the intelligent control of systems. Int J Control, 1992, 56(2): 263 doi: 10.1080/00207179208934315
    [12] Scardapane S, Wang D H. Randomness in neural networks: An overview. WIREs Data Min Knowl Disc, 2017, 7(2): e1200 doi: 10.1002/widm.1200
    [13] Ditterrich T G. Machine learning research: four current direction. Artif Intell Mag, 1997, 4: 97 http://ci.nii.ac.jp/naid/10020896742
    [14] Kearns M J, Valiant L G. Learning Boolean Formulae or Finite Automata is as Hard as Factoring. Cambridge: Harvard University, Center for Research in Computing Technology, Aiken Computation Laboratory, 1988
    [15] Schapire R E. The strength of weak learnability. Mach Learn, 1990, 5(2): 197 doi: 10.1109/SFCS.1989.63451
    [16] Schwenk H, Bengio Y. Boosting neural networks. Neural Comput, 2000, 12(8): 1869 doi: 10.1162/089976600300015178
    [17] Martínez-Mu?oz G, Suárez A. Out-of-bag estimation of the optimal sample size in bagging. Pattern Recognit, 2010, 43(1): 143 doi: 10.1016/j.patcog.2009.05.010
    [18] Dai W, Chai T Y, Yang S X. Data-driven optimization control for safety operation of hematite grinding process. IEEE Trans Ind Electron, 2015, 62(5): 2930 doi: 10.1109/TIE.2014.2362093
    [19] Dai W, Liu Q, Chai T Y. Particle size estimate of grinding processes using random vector functional link networks with improved robustness. Neurocomputing, 2015, 169: 361 doi: 10.1016/j.neucom.2014.08.098
    [20] Rao C R. Generalized Inverse of Matrices and its Applications. New York: Wiley, 1971
    [21] Wang D H, Alhamdoosh M. Evolutionary extreme learning machine ensembles with size control. Neurocomputing, 2013, 102: 98 doi: 10.1016/j.neucom.2011.12.046
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  1111
  • HTML全文瀏覽量:  507
  • PDF下載量:  20
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-07
  • 刊出日期:  2019-01-01

目錄

    /

    返回文章
    返回