<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

全尾砂無耙深錐穩態濃密性能分析

李公成 王洪江 吳愛祥 焦華喆 王方正

李公成, 王洪江, 吳愛祥, 焦華喆, 王方正. 全尾砂無耙深錐穩態濃密性能分析[J]. 工程科學學報, 2019, 41(1): 60-66. doi: 10.13374/j.issn2095-9389.2019.01.006
引用本文: 李公成, 王洪江, 吳愛祥, 焦華喆, 王方正. 全尾砂無耙深錐穩態濃密性能分析[J]. 工程科學學報, 2019, 41(1): 60-66. doi: 10.13374/j.issn2095-9389.2019.01.006
LI Gong-cheng, WANG Hong-jiang, WU Ai-xiang, JIAO Hua-zhe, WANG Fang-zheng. Analysis of thickening performance of unclassified tailings in rakeless deep cone thickener[J]. Chinese Journal of Engineering, 2019, 41(1): 60-66. doi: 10.13374/j.issn2095-9389.2019.01.006
Citation: LI Gong-cheng, WANG Hong-jiang, WU Ai-xiang, JIAO Hua-zhe, WANG Fang-zheng. Analysis of thickening performance of unclassified tailings in rakeless deep cone thickener[J]. Chinese Journal of Engineering, 2019, 41(1): 60-66. doi: 10.13374/j.issn2095-9389.2019.01.006

全尾砂無耙深錐穩態濃密性能分析

doi: 10.13374/j.issn2095-9389.2019.01.006
基金項目: 

國家十三五重點研發計劃課題資助項目 2017YFC0602903

國家自然科學基金資助項目 51374034

國家自然科學基金資助項目 51304011

北京市科技計劃資助項目 Z161100001216002

詳細信息
    通訊作者:

    王洪江,E-mail: wanghj1988@126.com

  • 中圖分類號: TD853

Analysis of thickening performance of unclassified tailings in rakeless deep cone thickener

More Information
  • 摘要: 結合沉降和壓濾實驗, 對脫水性能數據進行曲線擬合獲得連續網狀結構形成濃度、壓縮屈服應力和干涉沉降系數, 引入Usher提出的穩態濃密性能預測算法, 建立了無耙深錐濃密模型, 分析了絮凝劑單耗、底流中固相的體積分數、泥層高度等對固體通量和固體處理能力的影響規律.研究結果表明: 絮凝劑添加量對沉降區域影響大于壓密區域, 20 g·t-1時濃密性能較好, 底流中固相的體積分數越大固體通量越小; 在沉降區域, 固體通量僅與濃度有關, 不受泥層高度影響; 在壓密區域, 固體通量為濃度與泥層高度的方程; 模型參數范圍內, 當泥層高度 < 3.5 m時, 固體處理能力為濃度與泥層高度的方程, 當泥層高度>3.5 m時, 固體處理能力與固體通量隨底流中固相的體積分數變化規律一致.

     

  • 圖  1  全尾砂粒級組成曲線

    Figure  1.  Grain-size curve of unclassified tailings

    圖  2  壓濾實驗裝置. (a) 示意圖;(b) 測試圖

    Figure  2.  Filtration rig: (a) diagrammatic sketch; (b) photograph of test program equipment

    圖  3  不同絮凝劑單耗壓縮屈服應力與底流中固相的體積分數擬合曲線

    Figure  3.  Fitting curves between compressive yield stress and underflow concentration for different flocculant dosages

    圖  4  不同絮凝劑單耗干涉沉降系數與底流中固相的體積分數擬合曲線

    Figure  4.  Fitting curves of hindered settling function and underflow concentration for different flocculant dosages

    圖  5  無耙深錐濃密模型

    z—濃密機高度; hb—泥層高度; hc—錐體高度; dmin—濃密機最小直徑; dmax—濃密機最大直徑; ht—濃密機高度; ϕg—連續網狀結構形成體積分數

    Figure  5.  Model of rakeless deep cone thickener

    圖  6  不同泥層高度固體通量隨濃度變化規律

    Figure  6.  Relation between solids flux and concentration for different mud heights

    圖  7  不同泥層高度固體處理能力隨濃度變化規律

    Figure  7.  Relation between solids throughput and concentration for different mud heights

    圖  8  泥層高度8 m時不同絮凝劑單耗固體通量隨濃度變化規律

    Figure  8.  Relation between solids flux and concentration for different flocculant dosages at a mud height of 8 m

    圖  9  不同絮凝劑單耗下固體通量與處理能力變化

    Figure  9.  Change in solids flux and throughput for different flocculant dosages

    表  1  連續網狀結構形成體積分數與絮凝劑單耗關系

    Table  1.   Relation between gel point and flocculant dosage

    絮凝劑單耗/(g·t-1) 連續網狀結構形成體積分數
    5 0.260
    10 0.277
    20 0.301
    40 0.265
    80 0.258
    下載: 導出CSV

    表  2  不同絮凝劑單耗壓縮屈服應力與底流中固相的體積分數模型擬合參數

    Table  2.   Fitting parameters of model of compressive yield stress and underflow concentration for different flocculant dosages

    絮凝劑單耗/
    (g·t-1)
    經驗參數
    pa pb pm pn
    5 304.732 51.432 2.941 -4.605
    10 498.823 52.281 2.964 -4.724
    20 385.464 54.000 2.952 -5.201
    40 500.833 49.904 2.945 -4.205
    80 344.351 48.469 2.944 -3.909
    下載: 導出CSV

    表  3  不同絮凝劑單耗干涉沉降系數與底流中固相的體積分數模型擬合參數

    Table  3.   Fitting parameters of model of hindered settling function and underflow concentration for different flocculant dosages

    絮凝劑單耗/(g·t-1) 經驗參數
    ra rg rn rb
    5 5.31×1014 -0.04 4.21×109 6.71×1011
    10 8.12×1014 -0.09 1.82×109 3.51×1011
    20 6.69×1014 -0.05 1.39×109 3.34×1011
    40 3.45×1014 -0.07 9.45×109 2.64×1011
    80 8.45×1014 -0.06 2.23×109 8.19×1011
    下載: 導出CSV

    表  4  無耙深錐濃密模型參數取值

    Table  4.   Parameters of model of rakeless deep cone thickener

    dmin/m dmax/m hc/m hb/m ht/m
    2 14 3.5 0~12 14
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016(7): 1 doi: 10.3969/j.issn.1001-1250.2016.07.001

    吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016(7): 1 doi: 10.3969/j.issn.1001-1250.2016.07.001
    [2] Gao Z Y, Wu A X, Peng N B, et al. Research on the flocculation settlement rules and parameters optimization of filling tailings. Met Mine, 2017(6): 186 doi: 10.3969/j.issn.1001-1250.2017.06.037

    高志勇, 吳愛祥, 彭乃兵, 等. 充填尾礦絮凝沉降規律及參數優化. 金屬礦山, 2017(6): 186 doi: 10.3969/j.issn.1001-1250.2017.06.037
    [3] Li H, Wang H J, Wu A X, et al. Pressure rake analysis of deep cone thickeners based on tailings' settlement and rheological characteristics. J Univ Sci Technol Beijing, 2013, 35(12): 1553 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201312004.htm

    李輝, 王洪江, 吳愛祥, 等. 基于尾砂沉降與流變特性的深錐濃密機壓耙分析. 北京科技大學學報, 2013, 35(12): 1553 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201312004.htm
    [4] Jiao H Z, Wu A X, Wang H J, et al. Experiment study on the flocculation settlement characteristic of unclassified tailings. J Univ Sci Technol Beijing, 2011, 33(12): 1437 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112001.htm

    焦華喆, 吳愛祥, 王洪江, 等. 全尾砂絮凝沉降特性實驗研究. 北京科技大學學報, 2011, 33(12): 1437 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112001.htm
    [5] Wang H J, Chen Q R, Wu A X, et al. Study on the thickening properties of unclassified tailings and its application to thickener design. J Univ Sci Technol Beijing, 2011, 33(6): 676 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201106007.htm

    王洪江, 陳琴瑞, 吳愛祥, 等. 全尾砂濃密特性研究及其在濃密機設計中的應用. 北京科技大學學報, 2011, 33(6): 676 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201106007.htm
    [6] Yang Q P, Li H, Zhang J J, et al. Process and equipment of paste backfill in Chambishi Copper. Mod Mine, 2015(9): 185 doi: 10.3969/j.issn.1674-6082.2015.09.064

    楊清平, 李輝, 張晉軍, 等. 謙比希銅礦膏體充填工藝及其裝備. 現代礦業, 2015(9): 185 doi: 10.3969/j.issn.1674-6082.2015.09.064
    [7] Buscall R, White L R. The consolidation of concentrated suspensions. Part 1. -The theory of sedimentation. J Chem Soc Faraday Trans 1, 1987, 83(3): 873 doi: 10.1039/f19878300873
    [8] Green M D. Characterisation of Suspensions in Settling and Compression [Dissertation]. Melbourne: The University of Melbourne, 1997
    [9] Landman K A, White L R, Buscall R. The continuous-flow gravity thickener: steady state behavior. AIChE J, 1988, 34(2): 239 doi: 10.1002/aic.690340208
    [10] Landman K A, White L R. Solid/liquid separation of flocculated suspensions. Adv Colloid Interface Sci, 1994, 51: 175 doi: 10.1016/0001-8686(94)80036-7
    [11] Garrido P, Burgos R, Concha F, et al. Software for the design and simulation of gravity thickeners. Miner Eng, 2003, 16(2): 85 doi: 10.1016/S0892-6875(02)00168-1
    [12] Usher S P. Suspension Dewatering: Characterisation and Optimisation [Dissertation]. Melbourne: The University of Melbourne, 2002 http://www.researchgate.net/publication/269071211_Suspension_dewatering_Characterisation_and_optimisation
    [13] Usher S P, De Kretser R G, Scales P J. Validation of a new filtration technique for dewaterability characterization. AIChE J, 2001, 47(7): 1561 doi: 10.1002/aic.690470709
    [14] de Kretser R G, Usher S P, Scales P J, et al. Rapid filtration measurement of dewatering design and optimization parameters. AIChE J, 2001, 47(8): 1758 doi: 10.1002/aic.690470808
    [15] Fitch B. Current theory and thickener design. Ind Eng Chem, 1966, 58(10): 18 doi: 10.1021/ie50682a006
    [16] Coe H S, Clevenger G H. Methods for determining the capacities of slime-settling tanks. Trans Am Inst Min Eng, 1916, 60: 356
    [17] Usher S P, Scales P J. Steady state thickener modelling from the compressive yield stress and hindered settling function. Chem Eng J, 2005, 111(2-3): 253 doi: 10.1016/j.cej.2005.02.015
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  1130
  • HTML全文瀏覽量:  436
  • PDF下載量:  40
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-03-20
  • 刊出日期:  2019-01-01

目錄

    /

    返回文章
    返回