Experiment on preparation of calcium silicate board based on a mixed gel system of carbide slag and coal-based solid waste
-
摘要: 為減少制備硅酸鈣板對礦物原漿資源的損耗和提高對固體廢棄物的協同利用效果, 試驗以電石渣-煤基固廢膠凝體系為原料來研制高強度的純固廢硅酸鈣板, 并通過熱重-差示掃描量熱法、X射線衍射測試來分析硅酸鈣板中生成的主要礦物成分及不同配比對硅酸鈣板的強度變化關系.研究表明: 在水灰比為0.3的條件下, 使用電石渣完全替代水泥, 將粉煤灰和硅灰按1:1的質量比互摻調制所得的混合膠凝體系最終制得托貝莫來石型純固廢硅酸鈣樣板.在硅灰占原料的質量分數為0~10%范圍內, 樣板抗折強度隨硅灰添量增加而升高, 硅灰添量為10%時樣板達到最大抗折強度, 不同粒徑的原料顆粒相互填充, 板內晶體與水化膠凝體相互咬合, 最終使得樣板力學性能得到大幅提升; 樣板的抗折強度隨著NaOH添量的增加呈現先增后降的趨勢, NaOH添加質量分數為4%時樣板板面平滑, 強度達到最大值11.8 MPa, 該添量為NaOH的最佳添量, 通過掃描電鏡分析發現加入4% NaOH時對該膠凝體系的水化反應起到最佳激發作用, 且樣板料坯的微觀結構對其最終的力學性能有重要影響, 但不起決定性作用, 其中決定其最終強度的是板坯內水化膠凝體的數量、形態以及其相互間的聯結方式.Abstract: The purpose of this study was to reduce the loss of raw material calcium in the preparation of calcium silicate board and improve the synergistic utilization efficiency of solid waste. This test used a carbide slag-coal-based solid waste gelling system as the raw material to develop high-strength pure solid waste calcium silicate board. The main mineral components produced in the calcium silicate board and the variation in calcium silicate board strength with different proportioning were analyzed using thermogravimetry-differential scanning calorimetry (TG-DSC) and X-ray diffraction (XRD) test. The results show that the use of carbide slag completely substitutes cement. Fly ash and silica fume were mixed in mass ratio of 1:1 to prepare a mixed gelling system. Finally, the tobago mullite pure solid-waste calcium silicate template could be made with a water-cement ratio of 0.3. When silica fume was added in the mass percent of 0-10%, the bending strength of the template strengthened. Flexural strength of the calcium silicate board reached maximum when the amount of silica fume was 10%. Here, raw material particles composed of various dimensions were fully mixed. Also, crystals and hydrated gels closely interacted. Thus, the mechanical properties of the calcium silicate board significantly improved. The bending strength of the calcium silicate board tends to increase first, and then decrease with increasing NaOH dosage. The surface of the calcium silicate board was smooth when the mass percent of NaOH was 4% and mechanical strength reached a maximum of 11.8 MPa. This proved to be the optimum amount of added NaOH. The hydration reaction of the gelling system can achieve the best stimulating effect when 4% NaOH is added using scanning electron microscopy analysis. Moreover, the microstructure of material billets has an important impact on the final mechanical properties. However, the mechanical strength of the pre-cured calcium silicate board is not decisive of the final mechanical properties. The internal hydration gel number, shape, and connection are linked to each other inside the calcium silicate board; this is the key factor in determining the final mechanical properties of the calcium silicate board.
-
Key words:
- fly ash /
- mixed gelling system /
- waste synergistic utilization /
- bending strength /
- hydrate product
-
表 1 原料的化學組成成分(質量分數)
Table 1. Chemical composition of raw materials?
% 原料 SiO2 Al2O3 CaO Fe2O3 MgO SO3 總和 硅鈣渣 25.00 13.20 46.20 3.70 2.31 0.87 91.28 脫硫石膏 4.54 3.13 39.73 0.50 1.46 49.90 99.26 粉煤灰 47.68 42.07 3.47 2.32 0.51 0.86 96.91 電石渣 2.12 2.49 67.54 0.45 0.12 1.20 73.92 硅灰 92.35 1.73 0.80 1.52 0.68 0.24 97.32 表 2 原料的粒度組成
Table 2. Particle size composition of raw materials
名稱 D03 D06 D10 D16 D25 D50 D75 D85 D90 D97 硅鈣渣 0.495 1.589 3.981 8.625 16.99 40.89 69.46 87.55 101.9 170.3 脫硫石膏 0.082 0.117 0.207 0.684 2.096 19.27 46.85 62.46 74.18 106.5 粉煤灰 29.13 18.50 70.13 99.23 135 412.5 576 657.6 715.2 820 電石渣 0.622 1.354 2.692 5.047 9.095 21.55 40.71 55.58 67.81 103.5 硅灰 0.138 0.202 0.291 0.412 0.529 4.250 15.19 26.04 38.52 75.75 注:D代表顆粒直徑. 如D50表示累計50%點的直徑或50%通過粒徑,又稱中位徑,D03、D50和D97分別表示粉體的細端粒度、平均粒度和粗端粒度,其余為粉體粒度分布情況. 259luxu-164 -
參考文獻
[1] Hamilton A, Hall C. Physicochemical characterization of a hydrated calcium silicate board material. J Build Phys, 2005, 29(1): 9 doi: 10.1177/1744259105053280 [2] Lin S H, Pan C L, Hsu W T. Monotonic and cyclic loading tests for cold-formed steel wall frames sheathed with calcium silicate board. Thin-Walled Struct, 2014, 74: 49 doi: 10.1016/j.tws.2013.09.011 [3] Nithyadharan M, Kalyanaraman V. Experimental study of screw connections in CFS-calcium silicate board wall panels. Thin-Walled Struct, 2011, 49(6): 724 doi: 10.1016/j.tws.2011.01.004 [4] Liu X T, Wang B D, Xiao Y F, et al. Study of preparation process optimization of calcium silicate board by using JMP. New Build Mater, 2015, 42(1): 83 doi: 10.3969/j.issn.1001-702X.2015.01.022劉曉婷, 王寶冬, 肖永豐, 等. 粉煤灰提鋁殘渣制備硅酸鈣板的工藝優化研究. 新型建筑材料, 2015, 42(1): 83 doi: 10.3969/j.issn.1001-702X.2015.01.022 [5] Liang X R, Zhang Y Y, Xiang X, et al. Preparation of calcium silicate board by using diatomite. China Nonmetallic Min Ind, 2014(5): 15 doi: 10.3969/j.issn.1007-9386.2014.05.005梁興榮, 張英英, 向興, 等. 硅藻土制備硅酸鈣板的研究. 中國非金屬礦工業導刊, 2014(5): 15 doi: 10.3969/j.issn.1007-9386.2014.05.005 [6] Liang X R, Xue J, Cao H. Study of calcium silicate board prepared by phosphorus slag-phosphorus tailings. China Concr Cem Prod, 2016(3): 87 doi: 10.3969/j.issn.1000-4637.2016.03.020梁興榮, 薛俊, 曹宏. 磷渣-磷尾礦制備硅酸鈣板的研究. 混凝土與水泥制品, 2016(3): 87 doi: 10.3969/j.issn.1000-4637.2016.03.020 [7] Wang Y P, Tong G Q, Feng Q M. Study on calcium silicate board reinforced with fiber brucite. New Build Mater, 2003(6): 8 doi: 10.3969/j.issn.1001-702X.2003.06.004王玉平, 童光慶, 馮啟明. 纖維水鎂石增強硅酸鈣板的研究. 新型建筑材料, 2003(6): 8 doi: 10.3969/j.issn.1001-702X.2003.06.004 [8] Ouyang D, Yi C. Experimental study on the preparation of fiber calcium silicate board from kaolin scraps. Bull Chin Ceram Soci, 2013, 32(10): 1945 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201310003.htm歐陽東, 易超. 利用高嶺土下腳料制備纖維硅酸鈣板的實驗研究. 硅酸鹽通報, 2013, 32(10): 1945 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201310003.htm [9] Ouyang D, Yi C. Experimental study on the preparation of fiber reinforced calcium silicate board with ceramic polished slag. Bull Chin Ceram Soc, 2014, 33(2): 415 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201402045.htm歐陽東, 易超. 利用陶瓷拋光渣制備纖維增強硅酸鈣板的試驗研究. 硅酸鹽通報, 2014, 33(2): 415 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201402045.htm [10] Zhan J Y, Yang F H, Geng C L, et al. Mechanical activation treatment of molybdenum tailings and influence of molybdenum tailings on performance of calcium silicate boards. China Concr Cem Prod, 2017(6): 56 doi: 10.3969/j.issn.1000-4637.2017.06.014戰佳宇, 楊飛華, 耿春雷, 等. 鉬尾礦機械活化處理及對硅酸鈣板性能的影響. 混凝土與水泥制品, 2017(6): 56 doi: 10.3969/j.issn.1000-4637.2017.06.014 [11] Dai M, Wang Y, Wei Z, et al. Preparation and properties of humidity controlling board based on diatomaceous earth. Bull Chin Ceram Soc, 2016, 35(1): 231 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201601041.htm戴民, 王羽, 魏征, 等. 硅藻土基調濕板材的水熱合成試驗研究. 硅酸鹽通報, 2016, 35(1): 231 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201601041.htm [12] Li Y X, Cao Y D, Zhang J S, et al. Current situation of comprehensive utilization of silica fume in China and analysis of existing problems. Appl Chem Ind, 2017, 46(10): 2031 doi: 10.3969/j.issn.1671-3206.2017.10.041李彥鑫, 曹永丹, 張金山, 等. 我國硅灰的綜合利用現狀及存在問題淺析. 應用化工, 2017, 46(10): 2031 doi: 10.3969/j.issn.1671-3206.2017.10.041 [13] Li Y. Mechanism and test of mineral admixture filling in cement mortar. Henan Sci, 2013, 31(1): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201301025.htm李瀅. 礦物摻合料在水泥砂漿中的填充機理及試驗研究. 河南科學, 2013, 31(1): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201301025.htm [14] Xu Z F, Yang Z, Zhang J, et al. Preparation technology and properties of sludge-high calcium coal waste geopolymer. Acta Mater Compos Sin, 2013, 30(5): 113 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201305018.htm徐子芳, 楊政, 張娟, 等. 污泥-高鈣煤系廢物制備地聚合物的技術與性能. 復合材料學報, 2013, 30(5): 113 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201305018.htm [15] Hou Y F, Wang D M, Li Q, et al. Effect of water glass performance on fly ash-based geopolymers. J Chin Ceram Soc, 2008, 36(1): 61 doi: 10.3321/j.issn:0454-5648.2008.01.013侯云芬, 王棟民, 李俏, 等. 水玻璃性能對粉煤灰基礦物聚合物的影響. 硅酸鹽學報, 2008, 36(1): 61 doi: 10.3321/j.issn:0454-5648.2008.01.013 [16] Chen Y X, Wu F, Hu Y R. Theoretical and experimental analysis of improving the packing density of powder. Coal Convers, 2012, 35(1): 37 doi: 10.3969/j.issn.1004-4248.2012.01.010陳延信, 吳峰, 胡亞茹. 提高粉體堆積密度的理論與實驗研究. 煤炭轉化, 2012, 35(1): 37 doi: 10.3969/j.issn.1004-4248.2012.01.010 [17] Nie Y M, Liu S X, Zhang J X, et al. The research progress and developing prospect of fly ash activity. Fly Ash Comprehens Utiliz, 2013(3): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-FMLE201303015.htm聶軼苗, 劉淑賢, 張晉霞, 等. 粉煤灰的活性研究及進展. 粉煤灰綜合利用, 2013(3): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-FMLE201303015.htm [18] Qiao C Y, Ni W, Wang C L. Autoclaving reaction activity of four kinds of silicate minerals. J Univ Sci Technol Beijing, 2014, 36(6): 736 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201406005.htm喬春雨, 倪文, 王長龍. 四種硅酸鹽礦物的蒸壓反應活性. 北京科技大學學報, 2014, 36(6): 736 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201406005.htm -