<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

連鑄結晶器內渣膜形成及傳熱的研究現狀

文光華 楊昌霖 唐萍

文光華, 楊昌霖, 唐萍. 連鑄結晶器內渣膜形成及傳熱的研究現狀[J]. 工程科學學報, 2019, 41(1): 12-21. doi: 10.13374/j.issn2095-9389.2019.01.002
引用本文: 文光華, 楊昌霖, 唐萍. 連鑄結晶器內渣膜形成及傳熱的研究現狀[J]. 工程科學學報, 2019, 41(1): 12-21. doi: 10.13374/j.issn2095-9389.2019.01.002
WEN Guang-hua, YANG Chang-lin, TANG Ping. Research overview of formation and heat transfer of slag film in mold during continuous casting[J]. Chinese Journal of Engineering, 2019, 41(1): 12-21. doi: 10.13374/j.issn2095-9389.2019.01.002
Citation: WEN Guang-hua, YANG Chang-lin, TANG Ping. Research overview of formation and heat transfer of slag film in mold during continuous casting[J]. Chinese Journal of Engineering, 2019, 41(1): 12-21. doi: 10.13374/j.issn2095-9389.2019.01.002

連鑄結晶器內渣膜形成及傳熱的研究現狀

doi: 10.13374/j.issn2095-9389.2019.01.002
基金項目: 

國家自然科學基金資助項目 51574050

寶武鋼鐵聯合研究基金資助項目 U1760103

詳細信息
    通訊作者:

    文光華, E-mail: wengh@cqu.edu.cn

  • 中圖分類號: TF777.1

Research overview of formation and heat transfer of slag film in mold during continuous casting

More Information
  • 摘要: 介紹了模擬結晶器內渣膜形成的實驗方法, 綜述了國內外學者在保護渣傳熱方面所做的研究工作, 包括固態渣膜的界面熱阻、保護渣的導熱系數、輻射傳熱以及渣膜的光學性質, 并提出了今后在渣膜形成及傳熱研究中有待進一步完善的內容和方向.現有的研究結果表明利用熱絲法可以對渣膜的形成過程進行原位觀察, 采用水冷銅探頭法可以獲取用于研究渣膜微觀組織的固態渣膜樣品.渣膜的界面熱阻在0.0002~0.002 m2·K·W-1之間.在800℃以下, 保護渣的導熱系數在1.0~2.0 W·m-1·K-1范圍內, 且隨溫度的升高而逐漸增加.渣膜中的晶體一方面可以增加渣膜的界面熱阻, 另一方面可以提高固態渣膜的反射率, 起到降低輻射熱流的作用.此外, 過渡族金屬氧化物的加入以及固態渣膜中彌散分布的微小顆粒也能改變渣膜的光學性質, 從而影響通過渣膜的輻射傳熱.

     

  • 圖  1  保護渣在結晶器內的狀態和分布

    Figure  1.  Distribution of slag layers and slag films in the mold

    圖  2  熱絲法實驗裝置示意圖. (a) 工業攝像機;(b) 樣品室;(c) 單熱電偶;(d) 雙熱電偶;(e) 加熱裝置;(f) 計算機

    Figure  2.  Schematic diagram of experimental apparatus for hot thermocouple technique: (a) industrial camera; (b) sample chamber; (c) single hot thermocouple; (d) double hot thermocouple; (e) hot thermocouple driver; (f) computer

    圖  3  雙絲法模擬的渣膜形成過程, 其中通道1和2分別為模擬結晶器側固渣溫度和坯殼側液渣溫度條件. (a) 10 s;(b) 50 s;(c) 300 s;(d) 301 s[10]

    Figure  3.  Formation process of slag film simulated by DHTT, where Channel 1 and 2 simulate the temperature condition of solidified slag film near the mold wall and liquid slag near the shell, respectively: (a) 10 s; (b) 50 s; (c) 300 s; (d) 301 s[10]

    圖  4  浸入式水冷銅探頭法示意圖

    Figure  4.  Schematic of the experimental apparatus for copper-finger dig test

    圖  5  固態渣膜微觀組織結構

    Figure  5.  Microstructure of solid slag film

    圖  6  保護渣固態渣膜與結晶器的界面示意圖

    Figure  6.  Interface diagram between the solid slag film and mold

    圖  7  采用移動水冷銅模研究界面熱阻的設備示意圖[15]

    Figure  7.  Schematic of apparatus used to study the interfacial heat resistance by a moving copper mold[15]

    圖  8  采用固定水冷銅模研究界面熱阻的實驗設備[16]

    Figure  8.  Schematic of apparatus used to study the interfacial heat resistance by a water cooled copper mold[16]

    圖  9  不同溫度下保護渣導熱系數的測試結果[20]

    Figure  9.  Thermal conductivities of mold fluxes at various temperatures[20]

    圖  10  光線在坯殼與固態渣膜之間的多重反射. (a) 能量由坯殼表面發射;(b) 能量由固液界面發射

    Figure  10.  Multiple reflections between the shell and solid slag film: (a) emission from the shell; (b) emission from the interface

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Mills K C, Fox A B, Li Z, et al. Performance and properties of mould fluxes. Ironmak Steelmak, 2005, 32(1): 26 doi: 10.1179/174328105X15788
    [2] Mills K C, Fox A B. The role of mould fluxes in continuous casting-So simple yet so complex. ISIJ Int, 2003, 43(10): 1479 doi: 10.2355/isijinternational.43.1479
    [3] Mills K C, Courtney L, Fox A B, et al. The use of thermal analysis in the determination of the crystalline fraction of slag films. Thermochim Acta, 2002, 391(1-2): 175 doi: 10.1016/S0040-6031(02)00175-2
    [4] Zhang P, Wei Q C, Wang J Y, et al. Present state of research on heat transfer of casting flux film in continuous casting mold. J Iron Steel Res, 1995, 7(4): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON504.014.htm

    張平, 魏慶成, 王家蔭, 等. 連鑄結晶器中保護渣渣膜傳熱的研究現狀. 鋼鐵研究學報, 1995, 7(4): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON504.014.htm
    [5] Meng Y, Thomas B G. Simulation of microstructure and behavior of interfacial mold slag layers in continuous casting of steel. ISIJ Int, 2006, 46(5): 660 doi: 10.2355/isijinternational.46.660
    [6] Kashiwaya Y, Cicutti C E, Cramb A W, et al. Development of double and single hot thermocouple technique for in situ observation and measurement of mold slag crystallization. ISIJ Int, 1998, 38(4): 348 doi: 10.2355/isijinternational.38.348
    [7] Zhou L J, Wang W L, Liu R, et al. Computational modeling of temperature, flow, and crystallization of mold slag during double hot thermocouple technique experiments. Metall Mater Trans B, 2013, 44(5): 1264 doi: 10.1007/s11663-013-9864-2
    [8] Li J, Wang W L, Wei J, et al. A kinetic study of the effect of Na2O on the crystallization behavior of mold fluxes for casting medium carbon steel. ISIJ Int, 2012, 52(12): 2220 doi: 10.2355/isijinternational.52.2220
    [9] Lu B X, Chen K, Wang W L, et al. Effects of Li2O and Na2O on the crystallization behavior of lime-aliminum-based mold flux for casting high-Al steels. Metall Mater Trans B, 2014, 45(4): 1496 doi: 10.1007/s11663-014-0063-6
    [10] Gao J X, Wen G H, Sun Q H, et al. The influence of Na2O on the solidification and crystallization behavior of CaO-SiO2-Al2O3 based mold flux. Metall Mater Trans B, 2015, 46(4): 1850 doi: 10.1007/s11663-015-0366-2
    [11] Wen G H, Tang P, Yang B, et al. Simulation and characterization on heat transfer through mould slag film. ISIJ Int, 2012, 52(7): 1179 doi: 10.2355/isijinternational.52.1179
    [12] Wen G H, Zhu X B, Tang P, et al. Influence of raw material type on heat transfer and structure of mould slag. ISIJ Int, 2011, 51(7): 1028 doi: 10.2355/isijinternational.51.1028
    [13] Yang C L, Wen G H, Sun Q H, et al. Evolution of temperature and solid slag film during solidification of mold fluxes. Metall Mater Trans B, 2017, 48(2): 1292 doi: 10.1007/s11663-017-0917-9
    [14] Mills K C. A short history of mould powders. Ironmak Steelmak, 2017, 44(5): 326 doi: 10.1080/03019233.2017.1288367
    [15] Cho J, Shibata H, Emi T, et al. Thermal resistance at the interface between mold flux film and mold for continuous casting of steels. ISIJ Int, 1998, 38(5): 440 doi: 10.2355/isijinternational.38.440
    [16] Park J Y, Sohn Ⅱ. Evaluating the heat transfer phenomenon and the interfacial thermal resistance of mold flux using a copper disc mold simulator. Int J Heat Mass Transfer, 2017, 109: 1014 doi: 10.1016/j.ijheatmasstransfer.2017.02.092
    [17] Tsutsumi K, Nagasaka T, Hino M. Surface roughness of solidified mold flux in continuous casting process. ISIJ Int, 1999, 39(11): 1150 doi: 10.2355/isijinternational.39.1150
    [18] Shibata H, Kondo K, Suzuki M, et al. Thermal resistance between solidifying steel shell and continuous casting mold with intervening flux film. ISIJ Int, 1996, 36(Suppl): S179 doi: 10.2355/isijinternational.36.Suppl_S179
    [19] Long X, He S P, Wang Q, et al. Structure of solidified films of mold flux for peritectic steel. Metall Mater Trans B, 2017, 48(3): 1652 doi: 10.1007/s11663-017-0965-1
    [20] Mill K C. Structure and properties of slags used in the continuous casting of steel: Part 1 conventional mould powders. ISIJ Int, 2016, 56(1): 1 doi: 10.2355/isijinternational.ISIJINT-2015-231
    [21] Lee D W, Kingery W D. Radiation energy transfer and thermal conductivity of ceramic oxides. J Am Ceram Soc, 1960, 43(11): 594 doi: 10.1111/j.1151-2916.1960.tb13623.x
    [22] Anderson S P, Eggertson C. Thermal conductivity of powders used in continuous casting of steel. Ironmak Steelmak, 2015, 42(6): 456 doi: 10.1179/1743281214Y.0000000250
    [23] Susa M, Watanabe M, Ozawa S, et al. Thermal conductivity of CaO-SiO2-Al2O3 glassy slags: its dependence on molar ratios of Al2O3/CaO and SiO2/Al2O3. Ironmak Steelmak, 2007, 34(2): 124 doi: 10.1179/174328107X165672
    [24] Ozawa S, Susa M. Effect of Na2O additions on thermal conductivities of CaO-SiO2 slags. Ironmak Steelmak, 2005, 32(6): 487 doi: 10.1179/174328105X48179
    [25] Hayashi M, Abas R A, Seetharaman S. Effect of crystallinity on thermal diffusivities of mould fluxes for the continuous casting of steels. ISIJ Int, 2004, 44(4): 691 doi: 10.2355/isijinternational.44.691
    [26] Waseda Y, Masuda M, Watanabe K, et al. Thermal diffusivitites of continuous casting powders for steel at high temperature. High Temp Mater Processes, 1994, 13(4): 267 doi: 10.1515/HTMP.1994.13.4.267
    [27] Wang W L, Cramb A W. The observation of mold flux crystallization on radiative heat transfer. ISIJ Int, 2005, 45(12): 1864 doi: 10.2355/isijinternational.45.1864
    [28] Cho J, Shibata H, Emi T, et al. Radiative heat transfer through mold flux film during initial solidification in continuous casting of steel. ISIJ Int, 1998, 38(3): 268 doi: 10.2355/isijinternational.38.268
    [29] Diao J, Xie B, Wang N H, et al. Effect of transition metal oxides on radiative heat transfer through mold flux film in continuous casting of steel. ISIJ Int, 2007, 47(9): 1294 doi: 10.2355/isijinternational.47.1294
    [30] Diao J, Xie B, Xiao J P, et al. Radiative heat transfer in transition metal oxides contained in mold fluxes. ISIJ Int, 2009, 49(11): 1710 doi: 10.2355/isijinternational.49.1710
    [31] Diao J, Xie B. Research on reducing mold flux's radiative heat transfer based on FTIR and XRD. Spectrosc Spect Anal, 2009, 29(2): 336 doi: 10.3964/j.issn.1000-0593(2009)02-0336-04

    刁江, 謝兵. 基于FTIR和XRD的降低連鑄保護渣紅外輻射傳熱研究. 光譜學與光譜分析, 2009, 29(2): 336 doi: 10.3964/j.issn.1000-0593(2009)02-0336-04
    [32] Susa M, Kushimoto A, Toyota H, et al. Effects of both crystallization and iron oxides on the radiative heat transfer in mould fluxes. ISIJ Int, 2009, 49(11): 1722 doi: 10.2355/isijinternational.49.1722
    [33] Susa M, Kushimoto A, Endo R, et al. Controllability of radiative heat flux across mould flux films by cuspidine grain size. ISIJ Int, 2011, 51(10): 1587 doi: 10.2355/isijinternational.51.1587
    [34] Bucholtz A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl Opt, 1995, 34(15): 2765 doi: 10.1364/AO.34.002765
    [35] Yoon D W, Cho J W, Kim S H. Scattering effect of iron metallic particles on the extinction coefficient of CaO-SiO2-B2O3-Na2O-Fe2O3-CaF2 glasses. Metall Mater Trans B, 2016, 47(5): 2785 doi: 10.1007/s11663-016-0765-z
    [36] Yang C L, Wen G H, Zhu X F, et al. In situ observation and numerical simulation of bubble behavior in CaO-SiO2 based slag during isothermal and nonisothermal processes. J Non-Cryst Solids, 2017, 464: 56 doi: 10.1016/j.jnoncrysol.2017.03.028
    [37] Rousseau B, Meneses D D S, Echegut P, et al. Textural parameters influencing the radiative properties of a semitransparent porous media. Int J Therm Sci, 2011, 50(2): 178 doi: 10.1016/j.ijthermalsci.2010.10.001
  • 加載中
圖(10)
計量
  • 文章訪問數:  1130
  • HTML全文瀏覽量:  563
  • PDF下載量:  63
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-12-28
  • 刊出日期:  2019-01-01

目錄

    /

    返回文章
    返回