Research overview of formation and heat transfer of slag film in mold during continuous casting
-
摘要: 介紹了模擬結晶器內渣膜形成的實驗方法, 綜述了國內外學者在保護渣傳熱方面所做的研究工作, 包括固態渣膜的界面熱阻、保護渣的導熱系數、輻射傳熱以及渣膜的光學性質, 并提出了今后在渣膜形成及傳熱研究中有待進一步完善的內容和方向.現有的研究結果表明利用熱絲法可以對渣膜的形成過程進行原位觀察, 采用水冷銅探頭法可以獲取用于研究渣膜微觀組織的固態渣膜樣品.渣膜的界面熱阻在0.0002~0.002 m2·K·W-1之間.在800℃以下, 保護渣的導熱系數在1.0~2.0 W·m-1·K-1范圍內, 且隨溫度的升高而逐漸增加.渣膜中的晶體一方面可以增加渣膜的界面熱阻, 另一方面可以提高固態渣膜的反射率, 起到降低輻射熱流的作用.此外, 過渡族金屬氧化物的加入以及固態渣膜中彌散分布的微小顆粒也能改變渣膜的光學性質, 從而影響通過渣膜的輻射傳熱.Abstract: Mold flux, which plays an important role in continuous casting, occurs when liquid slag on top of the molten steel infiltrates the gap between the shell and mold. During this process, a liquid slag film forms on the shell side, whereas a solid slag film forms on the mold side. The behavior of the slag film between the shell and mold has a significant effect on the sequence casting and quality of the slab surface. To investigate the in-mold behavior and heat transfer of slag film, researchers have simulated the formation of slag film in the laboratory. Measurements and theoretical calculations have been performed to study the heat transfer of slag film. In this paper, the experimental methods used to simulate the formation of slag film were described and the research related to heat transfer in slag film was summarized, including the interfacial thermal resistance, the thermal conductivity of the mold flux, radiative heat transfer, and optical properties of the slag film. The issues related to the formation and heat transfer of slag film were also identified, that require further investigation. The results of recent studies indicate that the hot thermocouple technique could be applied to observe the formation of slag film, and the copper-finger dig test could be used to obtain samples for investigations related to the microstructure of solid slag film. The interfacial heat resistance is reported to be between 0.0002 and 0.002 m2·K·W-1. The thermal conductivity of mold flux at 800℃ ranges from 1.0-2.0 m2·K·W-1, and increases with increased temperature. Crystals in the solid slag film not only increase the interfacial heat resistance, but also decrease the radiative heat flux by reducing the reflectivity of slag film. Furthermore, due to the resulting change in optical properties, the addition of transition metal oxides and fine particles dispersed in slag film may also influence the radiative heat transfer through slag film.
-
Key words:
- continuous casting /
- mold flux /
- slag film /
- interfacial thermal resistance /
- radiation
-
圖 3 雙絲法模擬的渣膜形成過程, 其中通道1和2分別為模擬結晶器側固渣溫度和坯殼側液渣溫度條件. (a) 10 s;(b) 50 s;(c) 300 s;(d) 301 s[10]
Figure 3. Formation process of slag film simulated by DHTT, where Channel 1 and 2 simulate the temperature condition of solidified slag film near the mold wall and liquid slag near the shell, respectively: (a) 10 s; (b) 50 s; (c) 300 s; (d) 301 s[10]
259luxu-164 -
參考文獻
[1] Mills K C, Fox A B, Li Z, et al. Performance and properties of mould fluxes. Ironmak Steelmak, 2005, 32(1): 26 doi: 10.1179/174328105X15788 [2] Mills K C, Fox A B. The role of mould fluxes in continuous casting-So simple yet so complex. ISIJ Int, 2003, 43(10): 1479 doi: 10.2355/isijinternational.43.1479 [3] Mills K C, Courtney L, Fox A B, et al. The use of thermal analysis in the determination of the crystalline fraction of slag films. Thermochim Acta, 2002, 391(1-2): 175 doi: 10.1016/S0040-6031(02)00175-2 [4] Zhang P, Wei Q C, Wang J Y, et al. Present state of research on heat transfer of casting flux film in continuous casting mold. J Iron Steel Res, 1995, 7(4): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON504.014.htm張平, 魏慶成, 王家蔭, 等. 連鑄結晶器中保護渣渣膜傳熱的研究現狀. 鋼鐵研究學報, 1995, 7(4): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON504.014.htm [5] Meng Y, Thomas B G. Simulation of microstructure and behavior of interfacial mold slag layers in continuous casting of steel. ISIJ Int, 2006, 46(5): 660 doi: 10.2355/isijinternational.46.660 [6] Kashiwaya Y, Cicutti C E, Cramb A W, et al. Development of double and single hot thermocouple technique for in situ observation and measurement of mold slag crystallization. ISIJ Int, 1998, 38(4): 348 doi: 10.2355/isijinternational.38.348 [7] Zhou L J, Wang W L, Liu R, et al. Computational modeling of temperature, flow, and crystallization of mold slag during double hot thermocouple technique experiments. Metall Mater Trans B, 2013, 44(5): 1264 doi: 10.1007/s11663-013-9864-2 [8] Li J, Wang W L, Wei J, et al. A kinetic study of the effect of Na2O on the crystallization behavior of mold fluxes for casting medium carbon steel. ISIJ Int, 2012, 52(12): 2220 doi: 10.2355/isijinternational.52.2220 [9] Lu B X, Chen K, Wang W L, et al. Effects of Li2O and Na2O on the crystallization behavior of lime-aliminum-based mold flux for casting high-Al steels. Metall Mater Trans B, 2014, 45(4): 1496 doi: 10.1007/s11663-014-0063-6 [10] Gao J X, Wen G H, Sun Q H, et al. The influence of Na2O on the solidification and crystallization behavior of CaO-SiO2-Al2O3 based mold flux. Metall Mater Trans B, 2015, 46(4): 1850 doi: 10.1007/s11663-015-0366-2 [11] Wen G H, Tang P, Yang B, et al. Simulation and characterization on heat transfer through mould slag film. ISIJ Int, 2012, 52(7): 1179 doi: 10.2355/isijinternational.52.1179 [12] Wen G H, Zhu X B, Tang P, et al. Influence of raw material type on heat transfer and structure of mould slag. ISIJ Int, 2011, 51(7): 1028 doi: 10.2355/isijinternational.51.1028 [13] Yang C L, Wen G H, Sun Q H, et al. Evolution of temperature and solid slag film during solidification of mold fluxes. Metall Mater Trans B, 2017, 48(2): 1292 doi: 10.1007/s11663-017-0917-9 [14] Mills K C. A short history of mould powders. Ironmak Steelmak, 2017, 44(5): 326 doi: 10.1080/03019233.2017.1288367 [15] Cho J, Shibata H, Emi T, et al. Thermal resistance at the interface between mold flux film and mold for continuous casting of steels. ISIJ Int, 1998, 38(5): 440 doi: 10.2355/isijinternational.38.440 [16] Park J Y, Sohn Ⅱ. Evaluating the heat transfer phenomenon and the interfacial thermal resistance of mold flux using a copper disc mold simulator. Int J Heat Mass Transfer, 2017, 109: 1014 doi: 10.1016/j.ijheatmasstransfer.2017.02.092 [17] Tsutsumi K, Nagasaka T, Hino M. Surface roughness of solidified mold flux in continuous casting process. ISIJ Int, 1999, 39(11): 1150 doi: 10.2355/isijinternational.39.1150 [18] Shibata H, Kondo K, Suzuki M, et al. Thermal resistance between solidifying steel shell and continuous casting mold with intervening flux film. ISIJ Int, 1996, 36(Suppl): S179 doi: 10.2355/isijinternational.36.Suppl_S179 [19] Long X, He S P, Wang Q, et al. Structure of solidified films of mold flux for peritectic steel. Metall Mater Trans B, 2017, 48(3): 1652 doi: 10.1007/s11663-017-0965-1 [20] Mill K C. Structure and properties of slags used in the continuous casting of steel: Part 1 conventional mould powders. ISIJ Int, 2016, 56(1): 1 doi: 10.2355/isijinternational.ISIJINT-2015-231 [21] Lee D W, Kingery W D. Radiation energy transfer and thermal conductivity of ceramic oxides. J Am Ceram Soc, 1960, 43(11): 594 doi: 10.1111/j.1151-2916.1960.tb13623.x [22] Anderson S P, Eggertson C. Thermal conductivity of powders used in continuous casting of steel. Ironmak Steelmak, 2015, 42(6): 456 doi: 10.1179/1743281214Y.0000000250 [23] Susa M, Watanabe M, Ozawa S, et al. Thermal conductivity of CaO-SiO2-Al2O3 glassy slags: its dependence on molar ratios of Al2O3/CaO and SiO2/Al2O3. Ironmak Steelmak, 2007, 34(2): 124 doi: 10.1179/174328107X165672 [24] Ozawa S, Susa M. Effect of Na2O additions on thermal conductivities of CaO-SiO2 slags. Ironmak Steelmak, 2005, 32(6): 487 doi: 10.1179/174328105X48179 [25] Hayashi M, Abas R A, Seetharaman S. Effect of crystallinity on thermal diffusivities of mould fluxes for the continuous casting of steels. ISIJ Int, 2004, 44(4): 691 doi: 10.2355/isijinternational.44.691 [26] Waseda Y, Masuda M, Watanabe K, et al. Thermal diffusivitites of continuous casting powders for steel at high temperature. High Temp Mater Processes, 1994, 13(4): 267 doi: 10.1515/HTMP.1994.13.4.267 [27] Wang W L, Cramb A W. The observation of mold flux crystallization on radiative heat transfer. ISIJ Int, 2005, 45(12): 1864 doi: 10.2355/isijinternational.45.1864 [28] Cho J, Shibata H, Emi T, et al. Radiative heat transfer through mold flux film during initial solidification in continuous casting of steel. ISIJ Int, 1998, 38(3): 268 doi: 10.2355/isijinternational.38.268 [29] Diao J, Xie B, Wang N H, et al. Effect of transition metal oxides on radiative heat transfer through mold flux film in continuous casting of steel. ISIJ Int, 2007, 47(9): 1294 doi: 10.2355/isijinternational.47.1294 [30] Diao J, Xie B, Xiao J P, et al. Radiative heat transfer in transition metal oxides contained in mold fluxes. ISIJ Int, 2009, 49(11): 1710 doi: 10.2355/isijinternational.49.1710 [31] Diao J, Xie B. Research on reducing mold flux's radiative heat transfer based on FTIR and XRD. Spectrosc Spect Anal, 2009, 29(2): 336 doi: 10.3964/j.issn.1000-0593(2009)02-0336-04刁江, 謝兵. 基于FTIR和XRD的降低連鑄保護渣紅外輻射傳熱研究. 光譜學與光譜分析, 2009, 29(2): 336 doi: 10.3964/j.issn.1000-0593(2009)02-0336-04 [32] Susa M, Kushimoto A, Toyota H, et al. Effects of both crystallization and iron oxides on the radiative heat transfer in mould fluxes. ISIJ Int, 2009, 49(11): 1722 doi: 10.2355/isijinternational.49.1722 [33] Susa M, Kushimoto A, Endo R, et al. Controllability of radiative heat flux across mould flux films by cuspidine grain size. ISIJ Int, 2011, 51(10): 1587 doi: 10.2355/isijinternational.51.1587 [34] Bucholtz A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl Opt, 1995, 34(15): 2765 doi: 10.1364/AO.34.002765 [35] Yoon D W, Cho J W, Kim S H. Scattering effect of iron metallic particles on the extinction coefficient of CaO-SiO2-B2O3-Na2O-Fe2O3-CaF2 glasses. Metall Mater Trans B, 2016, 47(5): 2785 doi: 10.1007/s11663-016-0765-z [36] Yang C L, Wen G H, Zhu X F, et al. In situ observation and numerical simulation of bubble behavior in CaO-SiO2 based slag during isothermal and nonisothermal processes. J Non-Cryst Solids, 2017, 464: 56 doi: 10.1016/j.jnoncrysol.2017.03.028 [37] Rousseau B, Meneses D D S, Echegut P, et al. Textural parameters influencing the radiative properties of a semitransparent porous media. Int J Therm Sci, 2011, 50(2): 178 doi: 10.1016/j.ijthermalsci.2010.10.001 -