[1] |
Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides-a review. Hydrometallurgy, 2006, 84(1-2):81
|
[3] |
Hepel M, Hepel T. The anodic dissolution of chalcocite in an ammoniacal environment. J Electroanal Chem Interfacial Electrochem, 1977, 81(1):161
|
[4] |
Gerlach J, Küzeci E. Application of carbon paste electrodes to elucidate hydrometallurgical dissolution processes with special regard to chalcocite and covellite. Hydrometallurgy, 1983, 11(3):345
|
[5] |
Gómez H, Vedel J, Córdova R, et al. Effect of non-stoichiometry on the electrochemical behavior of chalcocite. J Electroanal Chem, 1995, 388(1-2):81
|
[8] |
Elsherief A E, Saba A E, Afifi S E. Anodic leaching of chalcocite with periodic cathodic reduction. Miner Eng, 1995, 8(9):967
|
[9] |
Bolorunduro S A. Kinetics of Leaching of Chalcocite in Acid Ferric Sulfate Media:Chemical and Bacterial Leaching[Dissertation]. Vancouver:The University of British Columbia, 1999
|
[10] |
Hanson J S, Fuerstenau D W. An electrochemical investigation of the adsorption of octyl hydroxamate on chalcocite. Colloids Surf, 1987, 26:133
|
[11] |
Bozkurt V, Rao S R, Finch J A. Electrochemistry of chalcocite/heazlewoodite/sulfhydril collector systems. Can Metall Q, 1994, 33(3):175
|
[12] |
Velásquez P, Leinen D, Pascual J, et al. XPS, SEM, EDX and EIS study of an electrochemically modified electrode surface of natural chalcocite (Cu2S). J Electroanal Chem, 2001, 510(1-2):20
|
[13] |
Arce E M, González I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution. Int J Miner Process, 2002, 67(1-4):17
|
[14] |
Lamache M, Bauer D. Anodic oxidation of cuprous sulfide and the preparation of nonstoichiometric copper sulfide. Anal Chem, 1979, 51(8):1320
|
[15] |
Ghahremaninezhad A, Dixon D G, Asselin E. Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochim Acta, 2013, 87:97
|
[16] |
Debernardi G, Carlesi C. Chemical-electrochemical approaches to the study passivation of chalcopyrite. Miner Process Extr Metall Rev, 2013, 34(1):10
|
[17] |
Warren G W, Wadsworth M E, El-Raghy S M. Passive and transpassive anodic behavior of chalcopyrite in acid solutions. J Electron Mater, 1992, 21(1):571
|
[18] |
Li A L, Huang S T. Comparison of the electrochemical mechanism of chalcopyrite dissolution in the absence or presence of Sulfolobus metallicus at 70℃. Miner Eng, 2011, 24(13):1520
|
[19] |
Gu G H, Hu K T, Zhang X, et al. The stepwise dissolution of chalcopyrite bioleached by Leptospirillum ferriphilum. Electrochim Acta, 2013, 103:50
|
[20] |
Zhao H B, Hu M H, Li Y N, et al. Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium. Trans Nonferrous Met Soc China, 2015, 25(1):303
|
[21] |
Wu S F, Yang C R, Qin W Q, et al. Sulfur composition on surface of chalcopyrite during its bioleaching at 50℃. Trans Nonferrous Met Soc China, 2015, 25(12):4110
|
[22] |
Zhao H B, Wang J, Qin W Q, et al. Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms. Miner Eng, 2015, 71:159
|
[24] |
Biesinger M C, Hart B R, Polack R, et al. Analysis of mineral surface chemistry in flotation separation using imaging XPS. Miner Eng, 2007, 20(2):152
|
[25] |
Zhao H B, Wang J, Qin W Q, et al. Surface species of chalcopyrite during bioleaching by moderately thermophilic bacteria. Trans Nonferrous Met Soc China, 2015, 25(8):2725
|
[26] |
Harmer S L, Pratt A R, Nesbitt W H, et al. Sulfur species at chalcopyrite (CuFeS2) fracture surfaces. Am Mineral, 2004, 89(7):1026
|
[27] |
Sasaki K, Takatsugi K, Tuovinen O H. Spectroscopic analysis of the bioleaching of chalcopyrite by Acidithiobacillus caldus. Hydrometallurgy, 2012, 127-128:116
|
[28] |
Wang J, Gan X W, Zhao H B, et al. Dissolution and passivation mechanisms of chalcopyrite during bioleaching:DFT calculation, XPS and electrochemistry analysis. Miner Eng, 2016, 98:264
|
[29] |
Qiu X B, Wen J K, Huang S T, et al. New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment. Int J Miner Metall Mater, 2017, 24(10):1104
|
[30] |
Liu Y, Dang Z, Lu G N, et al. Utilization of electrochemical impedance spectroscopy for monitoring pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Miner Eng, 2011, 24(8):833
|
[31] |
Acres R G, Harmer S L, Shui H W, et al. Synchrotron scanning photoemission microscopy of homogeneous and heterogeneous metal sulfide minerals. J Synchrotron Radiat, 2011, 18(4):649
|