<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

有菌和無菌體系下輝銅礦氧化電化學

廖勃 溫建康 武彪 尚鶴 陳勃偉

廖勃, 溫建康, 武彪, 尚鶴, 陳勃偉. 有菌和無菌體系下輝銅礦氧化電化學[J]. 工程科學學報, 2018, 40(12): 1495-1501. doi: 10.13374/j.issn2095-9389.2018.12.007
引用本文: 廖勃, 溫建康, 武彪, 尚鶴, 陳勃偉. 有菌和無菌體系下輝銅礦氧化電化學[J]. 工程科學學報, 2018, 40(12): 1495-1501. doi: 10.13374/j.issn2095-9389.2018.12.007
LIAO Bo, WEN Jian-kang, WU Biao, SHANG He, CHEN Bo-wei. Electrochemistry of oxidation of chalcocite in the presence and absence of microorganisms[J]. Chinese Journal of Engineering, 2018, 40(12): 1495-1501. doi: 10.13374/j.issn2095-9389.2018.12.007
Citation: LIAO Bo, WEN Jian-kang, WU Biao, SHANG He, CHEN Bo-wei. Electrochemistry of oxidation of chalcocite in the presence and absence of microorganisms[J]. Chinese Journal of Engineering, 2018, 40(12): 1495-1501. doi: 10.13374/j.issn2095-9389.2018.12.007

有菌和無菌體系下輝銅礦氧化電化學

doi: 10.13374/j.issn2095-9389.2018.12.007
基金項目: 

國家自然科學基金資助項目(51574036)

詳細信息
  • 中圖分類號: TF803.21

Electrochemistry of oxidation of chalcocite in the presence and absence of microorganisms

  • 摘要: 運用循環伏安曲線、穩態極化曲線和Tafel曲線等電化學手段以及X射線光電能譜(XPS)法研究了輝銅礦在有菌和無菌體系下氧化過程的電化學行為.研究結果驗證了輝銅礦在有菌體系和無菌體系下的兩步氧化溶解機理,第一步氧化反應為輝銅礦不斷氧化生成缺銅的中間產物CuxS(1≤x<2),直至生成CuS,在較低電位下即可進行;第二步反應為中間產物CuS的氧化,需要在較高電位下才可進行,反應速率較慢,是整個氧化反應的限制性步驟.循環伏安實驗顯示有菌體系電流密度明顯大于無菌體系,表明細菌加快了輝銅礦的氧化速率.穩態極化實驗顯示輝銅礦點蝕電位較低,無菌體系第一段反應活化區電位范圍小于有菌體系,表明輝銅礦氧化過程生成的中間產物硫膜具有鈍化效應,細菌可以通過自身氧化作用破壞硫膜,減弱輝銅礦表面的鈍化效果,加快輝銅礦的氧化溶解速率.X射線光電子能譜分析顯示電極表面鈍化層物質組成復雜,包含了CuS、多硫化物(Sn2-)、(S0)和含(SO42-)的氧化中間產物等多種物質,其中主要的鈍化物為CuS,表明輝銅礦的氧化遵循多硫化物途徑.

     

  • [1] Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides-a review. Hydrometallurgy, 2006, 84(1-2):81
    [3] Hepel M, Hepel T. The anodic dissolution of chalcocite in an ammoniacal environment. J Electroanal Chem Interfacial Electrochem, 1977, 81(1):161
    [4] Gerlach J, Küzeci E. Application of carbon paste electrodes to elucidate hydrometallurgical dissolution processes with special regard to chalcocite and covellite. Hydrometallurgy, 1983, 11(3):345
    [5] Gómez H, Vedel J, Córdova R, et al. Effect of non-stoichiometry on the electrochemical behavior of chalcocite. J Electroanal Chem, 1995, 388(1-2):81
    [8] Elsherief A E, Saba A E, Afifi S E. Anodic leaching of chalcocite with periodic cathodic reduction. Miner Eng, 1995, 8(9):967
    [9] Bolorunduro S A. Kinetics of Leaching of Chalcocite in Acid Ferric Sulfate Media:Chemical and Bacterial Leaching[Dissertation]. Vancouver:The University of British Columbia, 1999
    [10] Hanson J S, Fuerstenau D W. An electrochemical investigation of the adsorption of octyl hydroxamate on chalcocite. Colloids Surf, 1987, 26:133
    [11] Bozkurt V, Rao S R, Finch J A. Electrochemistry of chalcocite/heazlewoodite/sulfhydril collector systems. Can Metall Q, 1994, 33(3):175
    [12] Velásquez P, Leinen D, Pascual J, et al. XPS, SEM, EDX and EIS study of an electrochemically modified electrode surface of natural chalcocite (Cu2S). J Electroanal Chem, 2001, 510(1-2):20
    [13] Arce E M, González I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution. Int J Miner Process, 2002, 67(1-4):17
    [14] Lamache M, Bauer D. Anodic oxidation of cuprous sulfide and the preparation of nonstoichiometric copper sulfide. Anal Chem, 1979, 51(8):1320
    [15] Ghahremaninezhad A, Dixon D G, Asselin E. Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochim Acta, 2013, 87:97
    [16] Debernardi G, Carlesi C. Chemical-electrochemical approaches to the study passivation of chalcopyrite. Miner Process Extr Metall Rev, 2013, 34(1):10
    [17] Warren G W, Wadsworth M E, El-Raghy S M. Passive and transpassive anodic behavior of chalcopyrite in acid solutions. J Electron Mater, 1992, 21(1):571
    [18] Li A L, Huang S T. Comparison of the electrochemical mechanism of chalcopyrite dissolution in the absence or presence of Sulfolobus metallicus at 70℃. Miner Eng, 2011, 24(13):1520
    [19] Gu G H, Hu K T, Zhang X, et al. The stepwise dissolution of chalcopyrite bioleached by Leptospirillum ferriphilum. Electrochim Acta, 2013, 103:50
    [20] Zhao H B, Hu M H, Li Y N, et al. Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium. Trans Nonferrous Met Soc China, 2015, 25(1):303
    [21] Wu S F, Yang C R, Qin W Q, et al. Sulfur composition on surface of chalcopyrite during its bioleaching at 50℃. Trans Nonferrous Met Soc China, 2015, 25(12):4110
    [22] Zhao H B, Wang J, Qin W Q, et al. Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms. Miner Eng, 2015, 71:159
    [24] Biesinger M C, Hart B R, Polack R, et al. Analysis of mineral surface chemistry in flotation separation using imaging XPS. Miner Eng, 2007, 20(2):152
    [25] Zhao H B, Wang J, Qin W Q, et al. Surface species of chalcopyrite during bioleaching by moderately thermophilic bacteria. Trans Nonferrous Met Soc China, 2015, 25(8):2725
    [26] Harmer S L, Pratt A R, Nesbitt W H, et al. Sulfur species at chalcopyrite (CuFeS2) fracture surfaces. Am Mineral, 2004, 89(7):1026
    [27] Sasaki K, Takatsugi K, Tuovinen O H. Spectroscopic analysis of the bioleaching of chalcopyrite by Acidithiobacillus caldus. Hydrometallurgy, 2012, 127-128:116
    [28] Wang J, Gan X W, Zhao H B, et al. Dissolution and passivation mechanisms of chalcopyrite during bioleaching:DFT calculation, XPS and electrochemistry analysis. Miner Eng, 2016, 98:264
    [29] Qiu X B, Wen J K, Huang S T, et al. New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment. Int J Miner Metall Mater, 2017, 24(10):1104
    [30] Liu Y, Dang Z, Lu G N, et al. Utilization of electrochemical impedance spectroscopy for monitoring pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Miner Eng, 2011, 24(8):833
    [31] Acres R G, Harmer S L, Shui H W, et al. Synchrotron scanning photoemission microscopy of homogeneous and heterogeneous metal sulfide minerals. J Synchrotron Radiat, 2011, 18(4):649
  • 加載中
計量
  • 文章訪問數:  664
  • HTML全文瀏覽量:  353
  • PDF下載量:  11
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-12-27

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164