<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

劇烈瓦斯爆炸隧道洞口致損機理

李志鵬 吳順川

李志鵬, 吳順川. 劇烈瓦斯爆炸隧道洞口致損機理[J]. 工程科學學報, 2018, 40(12): 1476-1487. doi: 10.13374/j.issn2095-9389.2018.12.005
引用本文: 李志鵬, 吳順川. 劇烈瓦斯爆炸隧道洞口致損機理[J]. 工程科學學報, 2018, 40(12): 1476-1487. doi: 10.13374/j.issn2095-9389.2018.12.005
LI Zhi-peng, WU Shun-chuan. Damage mechanism of tunnel portal subjected to severe gas explosion[J]. Chinese Journal of Engineering, 2018, 40(12): 1476-1487. doi: 10.13374/j.issn2095-9389.2018.12.005
Citation: LI Zhi-peng, WU Shun-chuan. Damage mechanism of tunnel portal subjected to severe gas explosion[J]. Chinese Journal of Engineering, 2018, 40(12): 1476-1487. doi: 10.13374/j.issn2095-9389.2018.12.005

劇烈瓦斯爆炸隧道洞口致損機理

doi: 10.13374/j.issn2095-9389.2018.12.005
詳細信息
  • 中圖分類號: TU45

Damage mechanism of tunnel portal subjected to severe gas explosion

  • 摘要: 為探究洛帶古鎮隧道瓦斯爆炸下洞口襯砌致損機理,對隧道內積聚瓦斯等效、量化研究,采用LS-DYNA建立與洞門幾何結構一致的流固耦合數值模型并驗證,以RHT模型模擬混凝土并修正參數,對爆炸過程中沖擊波的傳播特征及強度、洞門致損機理研究分析,并將模擬結果與實際情況對比.研究表明:爆炸沖擊波在隧道內無規則的反射效應使其強度劇增、流場復雜,局部位置有聚焦現象,隧道內高壓達1.2~2.4 MPa;傳播過程中,靠襯砌一側沖擊波運動速度較快,形態也由“球狀”變為“喇叭”狀;當以平面波形態傳至洞門時,拱頂沖擊波強度增加56%,達2.8 MPa,并在削竹式洞門周邊發生衍射;自隧道傳出后,強度逐漸降低,邊墻及底板處的沖擊波沿縱向徑直射出,拱部沖擊波向斜上方運動,形成“蘑菇云”.爆炸作用下,襯砌曲邊墻腳處完全破壞;爆心距7 m范圍內襯砌受損嚴重;7~15 m范圍內拱部幾乎未受損;洞門受損嚴重.缺少圍巖的約束作用,洞門拱頂Y向、拱腳X向位移分別達0.26和0.14 m,迎爆面、背爆面拉應力分別介于7.9~31.5 MPa、4.9~15.6 MPa,背爆面出現多個應力峰值,洞門主要為受拉致損.經對比,洞門損傷特征的數值模擬結果與現場實際情況基本一致,可為后續的襯砌災害處治提供依據.

     

  • [20] Riedel W, Thoma K, Hiermaier S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin, 1999:315
    [21] Tu Z G, Lu Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations. Int J Impact Eng, 2009, 36(1):132
    [27] Henrych J, Major R. The Dynamics of Explosion and its Use. Amsterdam:Elsevier, 1979
  • 加載中
計量
  • 文章訪問數:  750
  • HTML全文瀏覽量:  273
  • PDF下載量:  14
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-06-25

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164