<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋼鐵冶金過程中的界面潤濕性的基礎

程禮梅 張立峰 沈平

程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面潤濕性的基礎[J]. 工程科學學報, 2018, 40(12): 1434-1453. doi: 10.13374/j.issn2095-9389.2018.12.002
引用本文: 程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面潤濕性的基礎[J]. 工程科學學報, 2018, 40(12): 1434-1453. doi: 10.13374/j.issn2095-9389.2018.12.002
CHENG Li-mei, ZHANG Li-feng, SHEN Ping. Fundamentals of interfacial wettability in ironmaking and steelmaking[J]. Chinese Journal of Engineering, 2018, 40(12): 1434-1453. doi: 10.13374/j.issn2095-9389.2018.12.002
Citation: CHENG Li-mei, ZHANG Li-feng, SHEN Ping. Fundamentals of interfacial wettability in ironmaking and steelmaking[J]. Chinese Journal of Engineering, 2018, 40(12): 1434-1453. doi: 10.13374/j.issn2095-9389.2018.12.002

鋼鐵冶金過程中的界面潤濕性的基礎

doi: 10.13374/j.issn2095-9389.2018.12.002
基金項目: 

國家重點研發計劃專項資助項目(2016YFB0300102,2017YFB0304001)

詳細信息
  • 中圖分類號: TF4

Fundamentals of interfacial wettability in ironmaking and steelmaking

  • 摘要: 首先介紹了界面張力和接觸角的基本概念,并總結了對于高溫體系,常見的界面張力以及接觸角的測量方法,重點對實驗過程中最常使用的座滴法進行了分析.在冶煉過程中,體系的組成,尤其是鋼液中的表面活性元素以及渣中的表面活性組分能顯著影響界面潤濕性,同時溫度對界面潤濕性的影響也不可忽略.因此系統分析了這兩個主要影響因素對界面潤濕性的影響.最后,總結了鋼鐵冶金過程中常見物質間的接觸角和界面張力.

     

  • [1] Seo S M, Paik Y H, Kim D S, et al. Interfacial tension and contact angle variations of SUS304 melt in contact with solid oxides and CaO-SiO2-Al2O3(CaF2) slags at 1470℃. Met Mater, 1996, 2(2):65
    [2] Ko E Y, Choi J, Park J Y, et al. Simulation of low carbon steel solidification and mold flux crystallization in continuous casting using a multi-mold simulator. Met Mater Int, 2014, 20(1):141
    [3] Seetharaman S, McLean A, Guthrie R, et al. Treatise on Process Metallurgy. 1st Ed. Oxford:Elsevier, 2013
    [4] Gibbs J W. On the equilibrium of heterogeneous substances. Am J Sci, 1878, 16:441
    [5] Sakao H, Mukai K. Interfacial phenomena in iron and steelmaking processes. Tetsu-to-Hagané, 1977, 63(3):513
    [6] Ozawa S, Takahashi S, Suzuki S, et al. Relationship of surface tension, oxygen partial pressure, and temperature for molten iron. Jpn J Appl Phys, 2011, 50:11RD05-1
    [9] Young T. An essay on the cohesion of fluids. Philos Trans R Soc London, 1805, 95:65
    [10] Chau T T, Bruckard W J, Koh P T L, et al. A review of factors that affect contact angle and implications for flotation practice. Adv Colloid Interface Sci, 2009, 150(2):106
    [11] Wenzel R N. Surface roughness and contact angle. J Phys Colloid Chem, 1948, 53(9):1466
    [12] Cassie A B D. Contact angles. Discuss Faraday Soc, 1948, 3:11
    [13] Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev, 2000, 45(2):59
    [14] Choi J Y, Lee H G. Wetting of solid Al2O3 with molten CaO-Al2O3-SiO2. ISIJ Int, 2003, 43(9):1348
    [15] Matsushita T, Watanabe T, Hayashi M, et al. Thermal, optical and surface/interfacial properties of molten slag systems. Int Mater Rev, 2011, 56(5-6):287
    [16] Korenko M, Šimko F. Measurement of interfacial tension in liquid-liquid high-temperature systems. J Chem Eng Data, 2010, 55(11):4561
    [17] Sobczak N, Singh M, Asthana R. High-temperature wettability measurements in metal/ceramic systems-some methodological issues. Curr Opin Solid State Mater Sci, 2005, 9(4-5):241
    [18] Fujii H, Matsumoto T, Nogi K, et al. Surface tension of molten silicon measured by the electromagnetic levitation method under microgravity. Metall Mater Trans A, 2000, 31(6):1585
    [19] Wegener M, Muhmood L, Sun S, et al. Surface tension measurements of calcia-alumina slags:a comparison of dynamic methods. Metall Mater Trans B, 2015, 46(1):316
    [20] Stalder A F, Melchior T, Müller M, et al. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids and Surf A:Physicochem Eng Aspects, 2010, 364(1-3):72
    [21] Choe J, Kim H G, Jeon Y, et al. Surface tension measurements of 430 stainless steel. ISIJ Int, 2014, 54(9):2104
    [22] Nakashima K, Mori K. Interfacial properties of liquid iron alloys and liquid slags relating to iron-and steel-making processes. ISIJ Int, 1992, 32(1):11
    [23] Choi J Y, Lee H G. Thermodynamic evaluation of the surface tension of molten CaO-SiO2-Al2O3 ternary slag. ISIJ Int, 2002, 42(3):221
    [24] Tanaka T, Goto H, Nakamoto M, et al. Dynamic changes in interfacial tension between liquid Fe alloy and molten slag induced by chemical reactions. ISIJ Int, 2016, 56(6):944
    [25] Sun H P, Nakashima K, Mori K. Interfacial tension between molten iron and CaO-SiO2 based fluxes. ISIJ Int, 1997, 37(4):323
    [26] Sun H P, Nakashima K, Mori K. Influence of slag composition on slag-iron interfacial tension. ISIJ Int, 2006, 46(3):407
    [27] Park S C, Gaye H, Lee H G. Interfacial tension between molten iron and CaO-SiO2-MgO-Al2O3-FeO slag system. Ironmaking Steelmaking, 2009, 36(1):3
    [28] Ogino K, Nogi K, Yamase O. Effects of selenium and tellurium on the surface tension of molten iron and the wettability of alumina by molten iron. ISIJ Int, 1983, 23(3):234
    [29] Ogino K, Suetaki T, Niioka K, et al. Effect of alloying elements on interfacial tension between molten steel and slag:fundamental study on interfacial phenomena in iron and steel-making processes IV. Tetsu-to-Hagane, 1967, 53(7):769
    [31] Shibata H, Watanabe Y, Nakajima K, et al. Degree of undercooling and contact angle of pure iron at 1933 K on single-crystal Al2O3, MgO, and MgAl2O4 under argon atmosphere with controlled oxygen partial pressure. ISIJ Int, 2009, 49(7):985
    [32] Xuan C J, Shibata H, Sukenaga S, et al. Wettability of Al2O3, MgO and Ti2O3 by liquid iron and steel. ISIJ Int, 2015, 55(9):1882
    [33] Gaye H, Lucas L D, Olette M, et al. Metal-slag interfacial properties:equilibrium values and "dynamic" phenomena. Can Metall Q, 1984, 23(2):179
    [34] Kim H G, Choe J, Inoue T, et al. Surface tension of supercooled Fe-O liquid alloys. Metall Mater Trans B, 2016, 47(4):2079
    [35] Dubberstein T, Heller H P, Klostermann J, et al. Surface tension and density data for Fe-Cr-Mo, Fe-Cr-Ni, and Fe-Cr-Mn-Ni steels. J Mater Sci, 2015, 50(22):7227
    [36] Lee S M, Kim S J, Kang Y B, et al. Numerical analysis of surface tension gradient effect on the behavior of gas bubbles at the solid/liquid interface of steel. ISIJ Int, 2012, 52(10):1730
    [37] Lee J, Morita K. Effect of carbon and sulphur on the surface tension of molten iron. Steel Res, 2002, 73(9):367
    [38] Morohoshi K, Uchikoshi M, Isshiki M, et al. Surface tension of liquid iron as functions of oxygen activity and temperature. ISIJ Int, 2011, 51(10):1580
    [39] Brooks R F, Quested P N. The surface tension of steels. J Mater Sci, 2005, 40(9-10):2233
    [40] Sukenaga S, Higo T, Shibata H, et al. Effect of CaO/SiO2 ratio on surface tension of CaO-SiO2-Al2O3-MgO melts. ISIJ Int, 2015, 55(6):1299
    [41] Dong Y W, Jiang Z H, Cao Y L, et al. Effect of MgO and SiO2 on surface tension of fluoride containing slag. J Central South Univ, 2014, 21(11):4104
    [42] Nakamoto M, Tanaka T, Holappa L, et al. Surface tension evaluation of molten silicates containing surface-active components (B2O3, CaF2 or Na2O). ISIJ Int, 2007, 47(2):211
    [43] Sukenaga S, Haruki S, Nomoto Y, et al. Density and surface tension of CaO-SiO2-Al2O3-R2O (R=Li, Na, K) melts. ISIJ Int, 2011, 51(8):1285
    [44] Rosypalová S, Dudek R, Dobrovská J. Influence of SiO2 on interfacial tension between oxide system and steel//Proceedings of 21th International Metallurgical and Materials Conference. Ostrava, 2012:109
    [45] Rosypalová S, Dudek R, Dobrovská J, et al. Interfacial tension at the interface of a system of molten oxide and molten steel. Mater Technol, 2014, 48(3):415
    [46] Kapilashrami E, Seetharaman S, Lahiri A K, et al. Investigation of the reactions between oxygen-containing iron and SiO2 substrate by X-ray sessile-drop technique. Metall Mater Trans B, 2003, 34(5):647
    [47] Amondarain Z, Kolbeinsen L, Arana J L. Wetting behavior of sintered nanocrystalline powders by armco Fe and 22CrNiMoV5-3 steel grade using sessile drop wettability technique. ISIJ Int, 2011, 51(5):733
    [48] Duchesne M A, Hughes R W. Slag density and surface tension measurements by the constrained sessile drop method. Fuel, 2017, 188:173
    [49] Zhou L J, Li J W, Wang W L, et al. Wetting behavior of mold flux droplet on steel substrate with or without interfacial reaction. Metall Mater Trans B, 2017, 48(4):1943
    [50] Luz A P, Ribeiro S, Domiciano V G, et al. Slag melting temperature and contact angle on high carbon containing refractory substrates. Cerâmica, 2011, 57(342):140
    [51] Nakamoto M, Tanaka T, Holappa L, et al. Surface tension evaluation of molten silicates containing surface-active components (B2O3, CaF2 or Na2O). ISIJ Int, 2007, 47(2):211
    [52] Mukai K, Li Z S, Zeze M. Surface tension and wettability of liquid Fe-16mass% Cr-O alloy with alumina. Mater Trans, 2002, 43(7):1724
    [53] Kapilashrami E, Jakobsson A, Seetharaman S, et al. Studies of the wetting characteristics of liquid iron on dense alumina by the X-ray sessile drop technique. Metall Mater Trans B, 2003, 34(2):193
    [54] Shin M, Lee J, Park J H. Wetting characteristics of liquid Fe-19% Cr-10% Ni alloys on dense alumina substrates. ISIJ Int, 2008, 48(12):1665
    [55] Zhao L Y, Sahajwalla V. Interfacial phenomena during wetting of graphite/alumina mixtures by liquid iron. ISIJ Int, 2003, 43(1):1
    [56] Heikkinen E P, Kokkonen T, Mattila R, et al. Influence of sequential contact with two melts on the wetting angle of the ladle slag and different steel grades on magnesia-carbon refractories. Steel Res Int, 2010, 81(12):1070
    [57] Shen P, Zhang L F, Zhou H, et al. Wettability between Fe-Al alloy and sintered MgO. Ceram Int, 2017, 43(10):7674
    [58] Cramb A W, Jimbo I. Interfacial considerations in continuous casting. Iron Steelmaker, 1989, 16(6):43
    [59] Lee J, Morita K. Dynamic interfacial phenomena between gas, liquid iron and solid CaO during desulfurization. ISIJ Int, 2004, 44(2):235
    [60] Yoshikawa T, Motosugi K, Tanaka T, et al. Wetting behaviors of steels containing Al and Al-S on solid CaO. Tetsu-to-Hagane, 2011, 97(7):361
    [61] Nakashima K, Takihira K, Miyazaki T, et al. Wettability and interfacial reaction between molten iron and zirconia substrates. J Am Ceram Soc, 1993, 76(12):3000
    [62] Rubio P J Y, Hong L, Saha-Chaudhury N, et al. Dynamic wetting of graphite and SiC by ferrosilicon alloys and silicon at 1550℃. ISIJ Int, 2006, 46(11):1570
    [63] Naidich J V. The wettability of solids by liquid metals. Prog Surf Membr Sci, 1981, 14:353
    [64] Sun H P, Mori K, Sahajwalla V, et al. Carbon solution in liquid iron and iron alloys. High Temp Mater Processes, 1998, 17(4):257
    [65] Wu C, Sahajwalla V. Influence of melt carbon and sulfur on the wetting of solid graphite by Fe-C-S melts. Metall Mater Trans B, 1998, 29(2):471
    [66] Amadeh A, Heshmati-Manesh S, Labbe J C, et al. Wettability and corrosion of TiN, TiN-BN and TiN-AlN by liquid steel. J Eur Ceram Soc, 2001, 21(3):277
    [67] Xuan C J, Shibata H, Zhao Z, et al. Wettability of TiN by liquid iron and steel. ISIJ Int, 2015, 55(8):1642
    [68] Zhang Z T, Matsushita T, Seetharaman S, et al. Investigation of wetting characteristics of liquid iron on dense MgAION-based ceramics by X-ray sessile drop technique. Metall Mater Trans B, 2006, 37(3):421
    [69] Ikram-ul-Haq M, Khanna R, Koshy P, et al. High-temperature interactions of alumina-carbon refractories with molten iron. ISIJ Int, 2010, 50(6):804
    [70] Fukami N, Wakamatsu R, Shinozaki N, et al. Wettability between porous MgAl2O4 substrates and molten iron. Mater Trans, 2009, 50(11):2552
    [71] Kaplashrami E, Sahajwalla V, Seetharaman S. Investigation of the wetting characteristics of liquid iron on mullite by sessile drop technique. ISIJ Int, 2004, 44(4):653
    [72] Seo S M, Kim D S, Paik Y H. Wetting characteristics of CaO-SiO2-Al2O3 ternary slag on refractory oxides, Al2O3, SiO2 and TiO2. Met Mater Int, 2001, 7(5):479
    [73] Shen P, Fujii H, Nogi K. Wettability of some refractory materials by molten SiO2-MnO-TiO2-FeOx slag. Mater Chem Phys, 2009, 114(2-3):681
    [74] Abdeyazdan H, Dogan N, Rhamdhani M A, et al. Dynamic wetting of CaO-Al2O3-SiO2-MgO liquid slag on selected solid oxides//7th High Temperature Processing Symposium. Melbourne, 2015:1
    [75] Monaghan B J, Abdeyazdan H, Dogan N, et al. Effect of slag composition on wettability of oxide inclusions. ISIJ Int, 2015, 55(9):1834
    [76] Aneziris C G, Hampel M. Microstructured and electro-assisted high-temperature wettability of MgO in contact with a silicate slagbased on fayalite. Int J Appl Ceram Technol, 2008, 5(5):469
    [77] Parry G, Ostrovski O. Wetting of solid iron, nickel and platinum by liquid MnO-SiO2 and CaO-Al2O3-SiO2. ISIJ Int, 2009, 49(6):788
    [78] Heo S H, Lee K, Chung Y. Reactive wetting phenomena of MgO-C refractories in contact with CaO-SiO2 slag. Trans Nonferrous Met Soc China, 2012, 22(Suppl 3):s870
    [79] Park J, Lee K, Pak J J, et al. Initial wetting and spreading phenomena of a CaO-SiO2 liquid slag on MgO substrates. ISIJ Int, 2014, 54(9):2059
    [80] Safarian J, Tangstad M. Wettability of silicon carbide by CaO-SiO2 slags. Metall Mater Trans B, 2009, 40(6):920
    [81] Yuan Z F, Wu Y, Zhao H X, et al. Wettability between molten slag and MgO-C refractories for the slag splashing process. ISIJ Int, 2013, 53(4):598
    [82] Parry G, Ostrovski O. Wettability of solid metals by molten CaO-SiO2-Al2O3 slag. Metall Mater Trans B, 2008, 39(5):681
    [83] Shatokha V, Korobeynikov I. Wettability of solid iron by molten CaO-SiO2-FeO slags//2nd International Conference "Advances in Metallurgical Processes & Materials". Kyiv, 2015
    [84] Jones H. The surface energy of solid metals. Met Sci J, 1970, 5(1):15
    [85] Kasama A, McLean A, Miller W, et al. Surface tension of liquid iron and iron-oxygen alloys. Can Metall Q, 1983, 22(1):9
    [86] Takiuchi N, Taniguchi T, Shinozaki N, et al. Effects of oxygen on the surface tension of liquid iron and the wettability of alumina by liquid iron. J Jpn Inst Met, 1991, 55(1):44
    [87] Zhu J, Mukai K. The surface tension of liquid iron containing nitrogen and oxygen. ISIJ Int, 1998, 38(10):1039
    [88] Ogino K, Nogi K, Koshida Y. Effect of oxygen on the wettability of solid oxide with molten iron. Tetsu-to-Hagane, 1973, 59(10):1380
    [89] Nogi K, Ogino K. Role of interfacial phenomena in deoxidation process of molten iron. Can Metall Q, 1982, 22(1):19
    [90] Ikemiya N, Umemoto J, Hara S, et al. Surface tensions and densities of molten Al2O3, Ti2O3, V2O5 and Nb2O5. ISIJ Int, 1993, 33(1):156
    [91] Tanaka T. Fundamental physical chemistry of interfacial phenomen-surface tension. Bull Iron Steel Inst Jpn, 2003, 8(2):22
    [92] Hanao M, Tanaka T, Kawamoto M, et al. Evaluation of surface tension of molten slag in multi-component systems. ISIJ Int, 2007, 47(7):935
    [93] Halden F A, Kingery W D. Surface tension at elevated temperatures. Ⅱ. Effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3. J Phys Chem, 1955, 59(6):557
    [94] Dumay C, Cramb A W. Density and interfacial tension of liquid Fe-Si alloys. Metall Mater Trans B, 1995, 26:173
    [95] Kalisz D. Modeling physicochemical properties of mold slag. Arch Metall Mater, 2014, 59(1):149
    [96] Ogino K, Hara S. Density, surface tension and electrical conductivity of calcium fluoride based fluxes for electroslag remelting. Tetsu-to-Hagane, 1977, 63(13):2141
    [97] Liu Y H, Lü X W, Bai C G, et al. Surface tension of the molten blast furnace slag bearing TiO2:measurement and evaluation. ISIJ Int, 2014, 54(10):2154
    [98] Suzuki M, Tanaka S, Hanao M, et al. Evaluating composition dependence in surface tension of Si-Ca-Na-O-F reciprocal oxide-fluoride melts. ISIJ Int, 2016, 56(1):63
    [99] Yu B, Lü X W, Xiang S L, et al. Wetting behavior of calcium ferrite melts on sintered MgO. ISIJ Int, 2015, 55(8):1558
    [100] Yoon T, Lee K, Lee B, et al. Wetting, spreading and penetration phenomena of slags on MgAl2O4 spinel refractories. ISIJ Int, 2017, 57(8):1327
  • 加載中
計量
  • 文章訪問數:  1057
  • HTML全文瀏覽量:  376
  • PDF下載量:  57
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-11-07

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164