[1] |
Seo S M, Paik Y H, Kim D S, et al. Interfacial tension and contact angle variations of SUS304 melt in contact with solid oxides and CaO-SiO2-Al2O3(CaF2) slags at 1470℃. Met Mater, 1996, 2(2):65
|
[2] |
Ko E Y, Choi J, Park J Y, et al. Simulation of low carbon steel solidification and mold flux crystallization in continuous casting using a multi-mold simulator. Met Mater Int, 2014, 20(1):141
|
[3] |
Seetharaman S, McLean A, Guthrie R, et al. Treatise on Process Metallurgy. 1st Ed. Oxford:Elsevier, 2013
|
[4] |
Gibbs J W. On the equilibrium of heterogeneous substances. Am J Sci, 1878, 16:441
|
[5] |
Sakao H, Mukai K. Interfacial phenomena in iron and steelmaking processes. Tetsu-to-Hagané, 1977, 63(3):513
|
[6] |
Ozawa S, Takahashi S, Suzuki S, et al. Relationship of surface tension, oxygen partial pressure, and temperature for molten iron. Jpn J Appl Phys, 2011, 50:11RD05-1
|
[9] |
Young T. An essay on the cohesion of fluids. Philos Trans R Soc London, 1805, 95:65
|
[10] |
Chau T T, Bruckard W J, Koh P T L, et al. A review of factors that affect contact angle and implications for flotation practice. Adv Colloid Interface Sci, 2009, 150(2):106
|
[11] |
Wenzel R N. Surface roughness and contact angle. J Phys Colloid Chem, 1948, 53(9):1466
|
[12] |
Cassie A B D. Contact angles. Discuss Faraday Soc, 1948, 3:11
|
[13] |
Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev, 2000, 45(2):59
|
[14] |
Choi J Y, Lee H G. Wetting of solid Al2O3 with molten CaO-Al2O3-SiO2. ISIJ Int, 2003, 43(9):1348
|
[15] |
Matsushita T, Watanabe T, Hayashi M, et al. Thermal, optical and surface/interfacial properties of molten slag systems. Int Mater Rev, 2011, 56(5-6):287
|
[16] |
Korenko M, Šimko F. Measurement of interfacial tension in liquid-liquid high-temperature systems. J Chem Eng Data, 2010, 55(11):4561
|
[17] |
Sobczak N, Singh M, Asthana R. High-temperature wettability measurements in metal/ceramic systems-some methodological issues. Curr Opin Solid State Mater Sci, 2005, 9(4-5):241
|
[18] |
Fujii H, Matsumoto T, Nogi K, et al. Surface tension of molten silicon measured by the electromagnetic levitation method under microgravity. Metall Mater Trans A, 2000, 31(6):1585
|
[19] |
Wegener M, Muhmood L, Sun S, et al. Surface tension measurements of calcia-alumina slags:a comparison of dynamic methods. Metall Mater Trans B, 2015, 46(1):316
|
[20] |
Stalder A F, Melchior T, Müller M, et al. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids and Surf A:Physicochem Eng Aspects, 2010, 364(1-3):72
|
[21] |
Choe J, Kim H G, Jeon Y, et al. Surface tension measurements of 430 stainless steel. ISIJ Int, 2014, 54(9):2104
|
[22] |
Nakashima K, Mori K. Interfacial properties of liquid iron alloys and liquid slags relating to iron-and steel-making processes. ISIJ Int, 1992, 32(1):11
|
[23] |
Choi J Y, Lee H G. Thermodynamic evaluation of the surface tension of molten CaO-SiO2-Al2O3 ternary slag. ISIJ Int, 2002, 42(3):221
|
[24] |
Tanaka T, Goto H, Nakamoto M, et al. Dynamic changes in interfacial tension between liquid Fe alloy and molten slag induced by chemical reactions. ISIJ Int, 2016, 56(6):944
|
[25] |
Sun H P, Nakashima K, Mori K. Interfacial tension between molten iron and CaO-SiO2 based fluxes. ISIJ Int, 1997, 37(4):323
|
[26] |
Sun H P, Nakashima K, Mori K. Influence of slag composition on slag-iron interfacial tension. ISIJ Int, 2006, 46(3):407
|
[27] |
Park S C, Gaye H, Lee H G. Interfacial tension between molten iron and CaO-SiO2-MgO-Al2O3-FeO slag system. Ironmaking Steelmaking, 2009, 36(1):3
|
[28] |
Ogino K, Nogi K, Yamase O. Effects of selenium and tellurium on the surface tension of molten iron and the wettability of alumina by molten iron. ISIJ Int, 1983, 23(3):234
|
[29] |
Ogino K, Suetaki T, Niioka K, et al. Effect of alloying elements on interfacial tension between molten steel and slag:fundamental study on interfacial phenomena in iron and steel-making processes IV. Tetsu-to-Hagane, 1967, 53(7):769
|
[31] |
Shibata H, Watanabe Y, Nakajima K, et al. Degree of undercooling and contact angle of pure iron at 1933 K on single-crystal Al2O3, MgO, and MgAl2O4 under argon atmosphere with controlled oxygen partial pressure. ISIJ Int, 2009, 49(7):985
|
[32] |
Xuan C J, Shibata H, Sukenaga S, et al. Wettability of Al2O3, MgO and Ti2O3 by liquid iron and steel. ISIJ Int, 2015, 55(9):1882
|
[33] |
Gaye H, Lucas L D, Olette M, et al. Metal-slag interfacial properties:equilibrium values and "dynamic" phenomena. Can Metall Q, 1984, 23(2):179
|
[34] |
Kim H G, Choe J, Inoue T, et al. Surface tension of supercooled Fe-O liquid alloys. Metall Mater Trans B, 2016, 47(4):2079
|
[35] |
Dubberstein T, Heller H P, Klostermann J, et al. Surface tension and density data for Fe-Cr-Mo, Fe-Cr-Ni, and Fe-Cr-Mn-Ni steels. J Mater Sci, 2015, 50(22):7227
|
[36] |
Lee S M, Kim S J, Kang Y B, et al. Numerical analysis of surface tension gradient effect on the behavior of gas bubbles at the solid/liquid interface of steel. ISIJ Int, 2012, 52(10):1730
|
[37] |
Lee J, Morita K. Effect of carbon and sulphur on the surface tension of molten iron. Steel Res, 2002, 73(9):367
|
[38] |
Morohoshi K, Uchikoshi M, Isshiki M, et al. Surface tension of liquid iron as functions of oxygen activity and temperature. ISIJ Int, 2011, 51(10):1580
|
[39] |
Brooks R F, Quested P N. The surface tension of steels. J Mater Sci, 2005, 40(9-10):2233
|
[40] |
Sukenaga S, Higo T, Shibata H, et al. Effect of CaO/SiO2 ratio on surface tension of CaO-SiO2-Al2O3-MgO melts. ISIJ Int, 2015, 55(6):1299
|
[41] |
Dong Y W, Jiang Z H, Cao Y L, et al. Effect of MgO and SiO2 on surface tension of fluoride containing slag. J Central South Univ, 2014, 21(11):4104
|
[42] |
Nakamoto M, Tanaka T, Holappa L, et al. Surface tension evaluation of molten silicates containing surface-active components (B2O3, CaF2 or Na2O). ISIJ Int, 2007, 47(2):211
|
[43] |
Sukenaga S, Haruki S, Nomoto Y, et al. Density and surface tension of CaO-SiO2-Al2O3-R2O (R=Li, Na, K) melts. ISIJ Int, 2011, 51(8):1285
|
[44] |
Rosypalová S, Dudek R, Dobrovská J. Influence of SiO2 on interfacial tension between oxide system and steel//Proceedings of 21th International Metallurgical and Materials Conference. Ostrava, 2012:109
|
[45] |
Rosypalová S, Dudek R, Dobrovská J, et al. Interfacial tension at the interface of a system of molten oxide and molten steel. Mater Technol, 2014, 48(3):415
|
[46] |
Kapilashrami E, Seetharaman S, Lahiri A K, et al. Investigation of the reactions between oxygen-containing iron and SiO2 substrate by X-ray sessile-drop technique. Metall Mater Trans B, 2003, 34(5):647
|
[47] |
Amondarain Z, Kolbeinsen L, Arana J L. Wetting behavior of sintered nanocrystalline powders by armco Fe and 22CrNiMoV5-3 steel grade using sessile drop wettability technique. ISIJ Int, 2011, 51(5):733
|
[48] |
Duchesne M A, Hughes R W. Slag density and surface tension measurements by the constrained sessile drop method. Fuel, 2017, 188:173
|
[49] |
Zhou L J, Li J W, Wang W L, et al. Wetting behavior of mold flux droplet on steel substrate with or without interfacial reaction. Metall Mater Trans B, 2017, 48(4):1943
|
[50] |
Luz A P, Ribeiro S, Domiciano V G, et al. Slag melting temperature and contact angle on high carbon containing refractory substrates. Cerâmica, 2011, 57(342):140
|
[51] |
Nakamoto M, Tanaka T, Holappa L, et al. Surface tension evaluation of molten silicates containing surface-active components (B2O3, CaF2 or Na2O). ISIJ Int, 2007, 47(2):211
|
[52] |
Mukai K, Li Z S, Zeze M. Surface tension and wettability of liquid Fe-16mass% Cr-O alloy with alumina. Mater Trans, 2002, 43(7):1724
|
[53] |
Kapilashrami E, Jakobsson A, Seetharaman S, et al. Studies of the wetting characteristics of liquid iron on dense alumina by the X-ray sessile drop technique. Metall Mater Trans B, 2003, 34(2):193
|
[54] |
Shin M, Lee J, Park J H. Wetting characteristics of liquid Fe-19% Cr-10% Ni alloys on dense alumina substrates. ISIJ Int, 2008, 48(12):1665
|
[55] |
Zhao L Y, Sahajwalla V. Interfacial phenomena during wetting of graphite/alumina mixtures by liquid iron. ISIJ Int, 2003, 43(1):1
|
[56] |
Heikkinen E P, Kokkonen T, Mattila R, et al. Influence of sequential contact with two melts on the wetting angle of the ladle slag and different steel grades on magnesia-carbon refractories. Steel Res Int, 2010, 81(12):1070
|
[57] |
Shen P, Zhang L F, Zhou H, et al. Wettability between Fe-Al alloy and sintered MgO. Ceram Int, 2017, 43(10):7674
|
[58] |
Cramb A W, Jimbo I. Interfacial considerations in continuous casting. Iron Steelmaker, 1989, 16(6):43
|
[59] |
Lee J, Morita K. Dynamic interfacial phenomena between gas, liquid iron and solid CaO during desulfurization. ISIJ Int, 2004, 44(2):235
|
[60] |
Yoshikawa T, Motosugi K, Tanaka T, et al. Wetting behaviors of steels containing Al and Al-S on solid CaO. Tetsu-to-Hagane, 2011, 97(7):361
|
[61] |
Nakashima K, Takihira K, Miyazaki T, et al. Wettability and interfacial reaction between molten iron and zirconia substrates. J Am Ceram Soc, 1993, 76(12):3000
|
[62] |
Rubio P J Y, Hong L, Saha-Chaudhury N, et al. Dynamic wetting of graphite and SiC by ferrosilicon alloys and silicon at 1550℃. ISIJ Int, 2006, 46(11):1570
|
[63] |
Naidich J V. The wettability of solids by liquid metals. Prog Surf Membr Sci, 1981, 14:353
|
[64] |
Sun H P, Mori K, Sahajwalla V, et al. Carbon solution in liquid iron and iron alloys. High Temp Mater Processes, 1998, 17(4):257
|
[65] |
Wu C, Sahajwalla V. Influence of melt carbon and sulfur on the wetting of solid graphite by Fe-C-S melts. Metall Mater Trans B, 1998, 29(2):471
|
[66] |
Amadeh A, Heshmati-Manesh S, Labbe J C, et al. Wettability and corrosion of TiN, TiN-BN and TiN-AlN by liquid steel. J Eur Ceram Soc, 2001, 21(3):277
|
[67] |
Xuan C J, Shibata H, Zhao Z, et al. Wettability of TiN by liquid iron and steel. ISIJ Int, 2015, 55(8):1642
|
[68] |
Zhang Z T, Matsushita T, Seetharaman S, et al. Investigation of wetting characteristics of liquid iron on dense MgAION-based ceramics by X-ray sessile drop technique. Metall Mater Trans B, 2006, 37(3):421
|
[69] |
Ikram-ul-Haq M, Khanna R, Koshy P, et al. High-temperature interactions of alumina-carbon refractories with molten iron. ISIJ Int, 2010, 50(6):804
|
[70] |
Fukami N, Wakamatsu R, Shinozaki N, et al. Wettability between porous MgAl2O4 substrates and molten iron. Mater Trans, 2009, 50(11):2552
|
[71] |
Kaplashrami E, Sahajwalla V, Seetharaman S. Investigation of the wetting characteristics of liquid iron on mullite by sessile drop technique. ISIJ Int, 2004, 44(4):653
|
[72] |
Seo S M, Kim D S, Paik Y H. Wetting characteristics of CaO-SiO2-Al2O3 ternary slag on refractory oxides, Al2O3, SiO2 and TiO2. Met Mater Int, 2001, 7(5):479
|
[73] |
Shen P, Fujii H, Nogi K. Wettability of some refractory materials by molten SiO2-MnO-TiO2-FeOx slag. Mater Chem Phys, 2009, 114(2-3):681
|
[74] |
Abdeyazdan H, Dogan N, Rhamdhani M A, et al. Dynamic wetting of CaO-Al2O3-SiO2-MgO liquid slag on selected solid oxides//7th High Temperature Processing Symposium. Melbourne, 2015:1
|
[75] |
Monaghan B J, Abdeyazdan H, Dogan N, et al. Effect of slag composition on wettability of oxide inclusions. ISIJ Int, 2015, 55(9):1834
|
[76] |
Aneziris C G, Hampel M. Microstructured and electro-assisted high-temperature wettability of MgO in contact with a silicate slagbased on fayalite. Int J Appl Ceram Technol, 2008, 5(5):469
|
[77] |
Parry G, Ostrovski O. Wetting of solid iron, nickel and platinum by liquid MnO-SiO2 and CaO-Al2O3-SiO2. ISIJ Int, 2009, 49(6):788
|
[78] |
Heo S H, Lee K, Chung Y. Reactive wetting phenomena of MgO-C refractories in contact with CaO-SiO2 slag. Trans Nonferrous Met Soc China, 2012, 22(Suppl 3):s870
|
[79] |
Park J, Lee K, Pak J J, et al. Initial wetting and spreading phenomena of a CaO-SiO2 liquid slag on MgO substrates. ISIJ Int, 2014, 54(9):2059
|
[80] |
Safarian J, Tangstad M. Wettability of silicon carbide by CaO-SiO2 slags. Metall Mater Trans B, 2009, 40(6):920
|
[81] |
Yuan Z F, Wu Y, Zhao H X, et al. Wettability between molten slag and MgO-C refractories for the slag splashing process. ISIJ Int, 2013, 53(4):598
|
[82] |
Parry G, Ostrovski O. Wettability of solid metals by molten CaO-SiO2-Al2O3 slag. Metall Mater Trans B, 2008, 39(5):681
|
[83] |
Shatokha V, Korobeynikov I. Wettability of solid iron by molten CaO-SiO2-FeO slags//2nd International Conference "Advances in Metallurgical Processes & Materials". Kyiv, 2015
|
[84] |
Jones H. The surface energy of solid metals. Met Sci J, 1970, 5(1):15
|
[85] |
Kasama A, McLean A, Miller W, et al. Surface tension of liquid iron and iron-oxygen alloys. Can Metall Q, 1983, 22(1):9
|
[86] |
Takiuchi N, Taniguchi T, Shinozaki N, et al. Effects of oxygen on the surface tension of liquid iron and the wettability of alumina by liquid iron. J Jpn Inst Met, 1991, 55(1):44
|
[87] |
Zhu J, Mukai K. The surface tension of liquid iron containing nitrogen and oxygen. ISIJ Int, 1998, 38(10):1039
|
[88] |
Ogino K, Nogi K, Koshida Y. Effect of oxygen on the wettability of solid oxide with molten iron. Tetsu-to-Hagane, 1973, 59(10):1380
|
[89] |
Nogi K, Ogino K. Role of interfacial phenomena in deoxidation process of molten iron. Can Metall Q, 1982, 22(1):19
|
[90] |
Ikemiya N, Umemoto J, Hara S, et al. Surface tensions and densities of molten Al2O3, Ti2O3, V2O5 and Nb2O5. ISIJ Int, 1993, 33(1):156
|
[91] |
Tanaka T. Fundamental physical chemistry of interfacial phenomen-surface tension. Bull Iron Steel Inst Jpn, 2003, 8(2):22
|
[92] |
Hanao M, Tanaka T, Kawamoto M, et al. Evaluation of surface tension of molten slag in multi-component systems. ISIJ Int, 2007, 47(7):935
|
[93] |
Halden F A, Kingery W D. Surface tension at elevated temperatures. Ⅱ. Effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3. J Phys Chem, 1955, 59(6):557
|
[94] |
Dumay C, Cramb A W. Density and interfacial tension of liquid Fe-Si alloys. Metall Mater Trans B, 1995, 26:173
|
[95] |
Kalisz D. Modeling physicochemical properties of mold slag. Arch Metall Mater, 2014, 59(1):149
|
[96] |
Ogino K, Hara S. Density, surface tension and electrical conductivity of calcium fluoride based fluxes for electroslag remelting. Tetsu-to-Hagane, 1977, 63(13):2141
|
[97] |
Liu Y H, Lü X W, Bai C G, et al. Surface tension of the molten blast furnace slag bearing TiO2:measurement and evaluation. ISIJ Int, 2014, 54(10):2154
|
[98] |
Suzuki M, Tanaka S, Hanao M, et al. Evaluating composition dependence in surface tension of Si-Ca-Na-O-F reciprocal oxide-fluoride melts. ISIJ Int, 2016, 56(1):63
|
[99] |
Yu B, Lü X W, Xiang S L, et al. Wetting behavior of calcium ferrite melts on sintered MgO. ISIJ Int, 2015, 55(8):1558
|
[100] |
Yoon T, Lee K, Lee B, et al. Wetting, spreading and penetration phenomena of slags on MgAl2O4 spinel refractories. ISIJ Int, 2017, 57(8):1327
|